D1. In class we proved the "alternating-series test" theorem: if the real-valued sequence $\left\{a_{n}\right\}$ strictly alternates in sign, and $\left|a_{n}\right|$ decreases monotonically to zero, then $\sum a_{n}$ converges. Give a example showing that the monotonicity assumption in this theorem cannot be removed. (I.e. find a counterexample to the following statement: if the sequence $\left\{a_{n}\right\}$ strictly alternates in sign, and $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum a_{n}$ converges.)
D2. Here is a True/False test. Note that statement (a) has a hypothesis that is missing in statements (b) and (c).
(a) If $\left\{a_{n}\right\}$ is a sequence of non-negative real numbers, and $\sum_{n} a_{n}$ converges, then $\sum_{n} a_{n}^{2}$ converges.
(b) If $\left\{a_{n}\right\}$ is a sequence of real numbers and $\sum_{n} a_{n}$ converges, then $\sum_{n} a_{n}^{2}$ converges.
(c) If $\left\{a_{n}\right\}$ is a sequence of real numbers and $\sum_{n} a_{n}$ converges, then $\sum_{n} a_{n}^{3}$ converges.

Take this True/False test and prove your answers. You will probably find (b) a little more difficult than (a). You will probably find (c) several orders of magnitude more difficult than (a) or (b). Think of (c) as extra credit rather than as a problem you are expected to be able to solve.

D3. Let $\left\{a_{(m, n)} \mid(m, n) \in \mathbf{N} \times \mathbf{N}\right\}$ be a "doubly indexed sequence"-a map $A: \mathbf{N} \times \mathbf{N} \rightarrow$ \mathbf{R}, where $a_{(m, n)}=A(m, n)$. It is sometimes useful to picture $\left\{a_{(m, n)}\right\}$ as an "infinity-byinfinity matrix". In this problem we are interested in attaching meaning to the notation " $\sum_{m, n} a_{(m, n)}$," also written " $\sum_{m, n=1}^{\infty} a_{(m, n)}$ ".
Definition. The doubly-indexed series $\sum_{m, n} a_{(m, n)}$ is absolutely convergent (or converges absolutely) if there exists a bijection $f: \mathbf{N} \rightarrow \mathbf{N} \times \mathbf{N}$ such that $\sum_{j=1}^{\infty} a_{f(j)}$ is absolutely convergent. (Said more loosely, we are calling the doubly-indexed series is absolutely convergent if there is some order in which we can add up the entries of the "infinite matrix" $\left\{a_{(m, n)}\right\}$ as the terms of an absolutely convergent singly-indexed series.)
(a) Prove that if $\sum_{m, n} a_{(m, n)}$ converges absolutely and $f, g: \mathbf{N} \rightarrow \mathbf{N} \times \mathbf{N}$ are bijections, then $\sum_{j=1}^{\infty} a_{f(j)}=\sum_{j=1}^{\infty} a_{g(j)}$. Hence if $\sum_{m, n} a_{(m, n)}$ converges absolutely, we can unambiguously define

$$
\sum_{m, n} a_{(m, n)}=\sum_{j=1}^{\infty} a_{f(j)}
$$

where f is any bijection $\mathbf{N} \rightarrow \mathbf{N} \times \mathbf{N}$.
(b) Explain why we should not attach any numerical value (in \mathbf{R}) to the notation " $\sum_{m, n} a_{(m, n)}$ " if this doubly-indexed series is not absolutely convergent.
(c) What is the most general condition on $\left\{a_{(m, n)}\right\}$ you can think of for which it would make sense to make the definition " $\sum_{m, n} a_{(m, n)}=\infty$ "? Try to express your condition as a potentially testable criterion - think of an example in which you would want to
say " $\sum_{m, n} a_{(m, n)}=\infty$ " and see whether you can tell, from your criterion, whether that statement is true.
(d) Prove that if $\sum_{m, n} a_{(m, n)}$ is absolutely convergent then $\sum_{m=1}^{\infty} a_{(m, n)}$ converges for all $n \in \mathbf{N}, \sum_{n=1}^{\infty} a_{(m, n)}$ converges for all $m \in \mathbf{N}$, and

$$
\sum_{m, n} a_{(m, n)}=\sum_{m=1}^{\infty}\left(\sum_{n=1}^{\infty} a_{(m, n)}\right)=\sum_{n=1}^{\infty}\left(\sum_{m=1}^{\infty} a_{(m, n)}\right) .
$$

(e) Let $\sum_{n=1}^{\infty} b_{n}, \sum_{n=1}^{\infty} c_{n}$ be absolutely convergent. Prove that $\sum_{m, n} b_{m} c_{n}$ is absolutely convergent, and that

$$
\sum_{m, n} b_{m} c_{n}=\left(\sum_{n=1}^{\infty} b_{n}\right)\left(\sum_{n=1}^{\infty} c_{n}\right)
$$

Remark. In the absolutely convergent case, enumerating $\mathbf{N} \times \mathbf{N}$ in the order
leads us to

$$
\begin{equation*}
\sum_{m, n} a_{(m, n)}=\sum_{k=1}^{\infty}\left(\sum_{n+m=k} a_{(m, n)}\right) . \tag{1}
\end{equation*}
$$

One of the main reasons that the conclusions above are important are in their application to power series (in which case we index the terms using $\mathbf{N} \bigcup\{0\}$ rather than \mathbf{N}, but clearly this makes no difference in the conclusions above). Suppose you are multiplying two polynomials together, say $a_{0}+a_{1} x+\ldots+a_{N} x^{N}$ (i.e. $\sum_{n=0}^{N} a_{n} x^{n}$) and $b_{0}+b_{1} x+\ldots+b_{M} x^{M}$ (i.e. $\sum_{m=0}^{M} b_{m} x^{m}$). After multiplying out, you generally rewrite the result by grouping together all the terms with a given power of x, which is the finite-series statement

$$
\left(\sum_{n=0}^{N} a_{n} x^{n}\right)\left(\sum_{m=0}^{M} b_{m} x^{m}\right)=\sum_{k=0}^{N+M}\left(\sum_{n+m=k} a_{n} b_{m}\right) x^{k} .
$$

Since power series are absolutely convergent on their open intervals of convergence, parts (a) and (e) imply that on the smaller of the two open intervals of convergence of two power series, you can multiply power series together just as if they were polynomials (with infinitely many terms). For fun, you might try to show the identity $\sin ^{2} x+\cos ^{2} x=1$ or $\sin x \cos x=\frac{1}{2} \sin (2 x)$ or $\left(e^{x}\right)^{2}=e^{2 x}$ this way.

In the problems below, You are allowed to use your knowledge of trigonometric functions and their derivatives, and to use the integration-by-parts formula you derived in HW problem p. 133/\#17.

D4. (a) Let $a, b \in \mathbf{R}, a<b$. Suppose $g:(a, b) \rightarrow \mathbf{R}$ is differentiable. Prove that if g^{\prime} is bounded, then there exists a continuous extension of g to the closed interval $[a, b]$ (i.e. there exists a continuous function $\tilde{g}:[a, b] \rightarrow \mathbf{R}$ that coincides with g on $(a, b))$.
(b) Suppose $g:(0, \pi) \rightarrow \mathbf{R}$ is continuously differentiable and has bounded first derivative. Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{\pi} g(x) \sin (n x) d x=0
$$

D5. In class we saw that $\sum_{n=1}^{\infty} 1 / n^{p}$ converges if $p>1$ but didn't try to evaluate the sum. In this problem you will end up computing the actual value of $\sum 1 / n^{2}$ (by roundabout means).

In this problem, you are free to use the conclusion of the previous problem.
(a) Let $f:[0, \pi] \rightarrow \mathbf{R}$ be a function. Suppose $f^{\prime \prime}$ exists and is continuous on $[0, \pi]$, and that $f(0)=f(\pi)=0$. For $0<x<\pi$, define $g(x)=f(x) / \sin (x)$. Prove that the limit of g^{\prime} exists at both endpoints of $[0, \pi]$, and hence that g^{\prime} extends to a continuous (and therefore bounded) function on $[0, \pi]$.
(b) Let f be as in part (a). Prove that

$$
\lim _{n \rightarrow \infty} \int_{0}^{\pi} f(x) \frac{\sin (n x)}{\sin (x)} d x=0
$$

(c) Verify that if n is any integer, then

$$
\int_{0}^{\pi} x(\pi-x) \cos (2 n x) d x=\left\{\begin{array}{rc}
-\pi /\left(2 n^{2}\right), & n \neq 0 \\
\pi^{3} / 6, & n=0
\end{array} .\right.
$$

(Note: for $n \neq 0$ the computation is simpler if you do not break the integral up into two pieces, one for $x^{2} \cos 2 n x$ and $x \cos 2 n x$.) Use this to prove that

$$
\sum_{n=1}^{\infty}\left(\int_{0}^{\pi} x(\pi-x) \cos (2 n x) d x\right)=-\frac{\pi}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}}
$$

(d) Show that for all integers $n \geq 1$,

$$
\cos (2 x)+\cos (4 x)+\cos (6 x)+\ldots+\cos (2 n x)=\frac{1}{2}\left(\frac{\sin ((2 n+1) x)}{\sin (x)}-1\right) .
$$

Use this to prove that

$$
\sum_{n=1}^{\infty}\left(\int_{0}^{\pi} x(\pi-x) \cos (2 n x) d x\right)=-\frac{1}{2} \int_{0}^{\pi} x(\pi-x) d x
$$

(e) Using the work above, determine the exact value of $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.

