
MAA 4212, Spring 2009—Homework # 4 non-book problems

D1. In class we proved the “alternating-series test” theorem: if the real-valued sequence
{an} strictly alternates in sign, and |an| decreases monotonically to zero, then

∑
an con-

verges. Give a example showing that the monotonicity assumption in this theorem cannot
be removed. (I.e. find a counterexample to the following statement: if the sequence {an}
strictly alternates in sign, and limn→∞ an = 0, then

∑
an converges.)

D2. Here is a True/False test. Note that statement (a) has a hypothesis that is missing
in statements (b) and (c).

(a) If {an} is a sequence of non-negative real numbers, and
∑

n an converges, then∑
n a

2
n converges.

(b) If {an} is a sequence of real numbers and
∑

n an converges, then
∑

n a
2
n converges.

(c) If {an} is a sequence of real numbers and
∑

n an converges, then
∑

n a
3
n converges.

Take this True/False test and prove your answers. You will probably find (b) a little more
difficult than (a). You will probably find (c) several orders of magnitude more difficult
than (a) or (b). Think of (c) as extra credit rather than as a problem you are expected
to be able to solve.

D3. Let {a(m,n) | (m,n) ∈ N×N} be a “doubly indexed sequence”—a map A : N×N→
R, where a(m,n) = A(m,n). It is sometimes useful to picture {a(m,n)} as an “infinity-by-
infinity matrix”. In this problem we are interested in attaching meaning to the notation
“
∑

m,n a(m,n),” also written “
∑∞

m,n=1 a(m,n)”.

Definition. The doubly-indexed series
∑

m,n a(m,n) is absolutely convergent (or converges
absolutely) if there exists a bijection f : N → N ×N such that

∑∞
j=1 af(j) is absolutely

convergent. (Said more loosely, we are calling the doubly-indexed series is absolutely
convergent if there is some order in which we can add up the entries of the “infinite
matrix” {a(m,n)} as the terms of an absolutely convergent singly-indexed series.)

(a) Prove that if
∑

m,n a(m,n) converges absolutely and f, g : N → N × N are bijec-
tions, then

∑∞
j=1 af(j) =

∑∞
j=1 ag(j). Hence if

∑
m,n a(m,n) converges absolutely, we can

unambiguously define ∑
m,n

a(m,n) =
∞∑
j=1

af(j)

where f is any bijection N→ N×N.

(b) Explain why we should not attach any numerical value (in R) to the notation
“
∑

m,n a(m,n)” if this doubly-indexed series is not absolutely convergent.

(c) What is the most general condition on {a(m,n)} you can think of for which it would
make sense to make the definition “

∑
m,n a(m,n) = ∞”? Try to express your condition

as a potentially testable criterion—think of an example in which you would want to
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say “
∑

m,n a(m,n) = ∞” and see whether you can tell, from your criterion, whether that
statement is true.

(d) Prove that if
∑

m,n a(m,n) is absolutely convergent then
∑∞

m=1 a(m,n) converges for all
n ∈ N,

∑∞
n=1 a(m,n) converges for all m ∈ N, and

∑
m,n

a(m,n) =
∞∑
m=1

(
∞∑
n=1

a(m,n)

)
=
∞∑
n=1

(
∞∑
m=1

a(m,n)

)
.

(e) Let
∑∞

n=1 bn,
∑∞

n=1 cn be absolutely convergent. Prove that
∑

m,n bmcn is absolutely
convergent, and that ∑

m,n

bmcn =

(
∞∑
n=1

bn

)(
∞∑
n=1

cn

)
.

Remark. In the absolutely convergent case, enumerating N×N in the order

(1, 1)

(1, 2) (2, 1)

(1, 3) (2, 2) (3, 1)

...

leads us to ∑
m,n

a(m,n) =
∞∑
k=1

( ∑
n+m=k

a(m,n)

)
. (1)

One of the main reasons that the conclusions above are important are in their application
to power series (in which case we index the terms using N

⋃
{0} rather than N, but clearly

this makes no difference in the conclusions above). Suppose you are multiplying two
polynomials together, say a0 +a1x+ . . .+aNx

N (i.e.
∑N

n=0 anx
n) and b0 +b1x+ . . .+bMx

M

(i.e.
∑M

m=0 bmx
m). After multiplying out, you generally rewrite the result by grouping

together all the terms with a given power of x, which is the finite-series statement(
N∑
n=0

anx
n

)(
M∑
m=0

bmx
m

)
=

N+M∑
k=0

( ∑
n+m=k

anbm

)
xk.

Since power series are absolutely convergent on their open intervals of convergence, parts
(a) and (e) imply that on the smaller of the two open intervals of convergence of two
power series, you can multiply power series together just as if they were polynomials (with
infinitely many terms). For fun, you might try to show the identity sin2 x+ cos2 x = 1 or
sin x cosx = 1

2
sin(2x) or (ex)2 = e2x this way.

In the problems below, You are allowed to use your knowledge of trigonometric
functions and their derivatives, and to use the integration-by-parts formula you derived
in HW problem p. 133/#17.
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D4. (a) Let a, b ∈ R, a < b. Suppose g : (a, b) → R is differentiable. Prove that if g′

is bounded, then there exists a continuous extension of g to the closed interval [a, b] (i.e.
there exists a continuous function g̃ : [a, b]→ R that coincides with g on (a, b)).

(b) Suppose g : (0, π) → R is continuously differentiable and has bounded first
derivative. Prove that

lim
n→∞

∫ π

0

g(x) sin(nx) dx = 0.

D5. In class we saw that
∑∞

n=1 1/np converges if p > 1 but didn’t try to evaluate the sum.
In this problem you will end up computing the actual value of

∑
1/n2 (by roundabout

means).
In this problem, you are free to use the conclusion of the previous problem.

(a) Let f : [0, π] → R be a function. Suppose f ′′ exists and is continuous on [0, π], and
that f(0) = f(π) = 0. For 0 < x < π, define g(x) = f(x)/ sin(x). Prove that the limit
of g′ exists at both endpoints of [0, π], and hence that g′ extends to a continuous (and
therefore bounded) function on [0, π].

(b) Let f be as in part (a). Prove that

lim
n→∞

∫ π

0

f(x)
sin(nx)

sin(x)
dx = 0.

(c) Verify that if n is any integer, then∫ π

0

x(π − x) cos(2nx) dx =

{
−π/(2n2), n 6= 0

π3/6, n = 0
.

(Note: for n 6= 0 the computation is simpler if you do not break the integral up into two
pieces, one for x2 cos 2nx and x cos 2nx.) Use this to prove that

∞∑
n=1

(∫ π

0

x(π − x) cos(2nx) dx

)
= −π

2

∞∑
n=1

1

n2
.

(d) Show that for all integers n ≥ 1,

cos(2x) + cos(4x) + cos(6x) + . . .+ cos(2nx) =
1

2

(
sin((2n+ 1)x)

sin(x)
− 1

)
.

Use this to prove that

∞∑
n=1

(∫ π

0

x(π − x) cos(2nx) dx

)
= −1

2

∫ π

0

x(π − x)dx.

(e) Using the work above, determine the exact value of
∑∞

n=1
1
n2 .
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