
MAA 4212, Spring 2009—Miscellaneous non-book problems

F1. Picard iteration. Recall that our proof of existence and uniqueness of solutions to
the initial value problem

dy

dt
= f(t, y), y(t0) = y0 (1)

used the Contracting Mapping Fixed-Point Theorem (CMT), which was itself proved by
looking at the sequence of iterates of a point under a contraction defined on some complete
metric space. In the FTODE, the metric space was a closed ball in C(I) for some closed
interval I, and the contraction was the map H defined by

H(g)(t) = y0 +

∫ t

t0

f(s, g(s)) ds.

Recall that the CMT gives us not just existence and uniqueness of a fixed point, but
a way of constructing the fixed point: start with any point in the metric space, and follow
the sequence of points obtained by repeatedly applying the contraction. Carrying out
this procedure in the context of the FTODE is called Picard iteration. We start with a
function g0 (usually the constant function t 7→ y0) defined on some neighborhood of t0,
define g1 = H(g0), g2 = H(g1), etc. The proof of the FTODE (via the CMT) shows that if
we take δ small enough, (1) will have a unique solution on (t0−δ, t0 +δ), and the sequence
{gn} will converge uniformly to this solution on that interval. Thus, Picard iteration gives
us a (not necessarily efficient) way to produce the solution of (1). Of course, for some f
we can solve (1) explicitly, in closed form, rather than express the solution as the limit of
some sequence; that’s what you did in the first few weeks of MAP 2302. For such ODEs,
there is no point to doing Picard Iteration other than for fun, to see what happens, or as
an exercise in learning. (Even for ODEs that we can’t solve by MAP 2302 methods, there
are usually much more efficient ways of computing solutions than to use Picard Iteration.)

While the proof of the FTODE requires us to choose δ sufficiently small, in practice
when we do Picard Iteration we don’t worry about how small δ needed to be for that
proof, just how small it needs to be for the sequence we actually produce to converge.

Try Picard Iteration for the following IVPs. In each case, take g0 to be the constant
function with value y0.

(a) dy
dt

= y, y(0) = 1. Find a formula for gn(t). If you do this right, what you find
should be a sequence that converges on the whole real line, uniformly on any bounded
interval. Where have you seen this sequence {gn} before?

The IVP in (a) is very, very special. Ordinarily the phenomenon that you saw (or should
have seen) in (a) does not occur. For example:

(b) dy
dt

= y2, y(0) = 1. Find a “semi-explicit” formula for gn(t), of this form:

gn(t) = pn(t) + qn(t), (2)

1

where pn is a polynomial of degree n that you give an explicit formula for, and qn is a
polynomial whose terms have degree ranging from n+ 1 to 2n − 1. (You’re not expected
to find a formula for qn, but for fun you might try to find a formula for the coefficient
of tn+1.) If you do this right, you should be able to show explicitly (not by recourse to
the FTODE or CMT) that the more manageable sequence {pn} converges pointise on
(−1, 1) (uniformly on compact subsets) to the solution you could have found in MAP
2302, t 7→ 1

1−t . (The proof of the FTODE shows indirectly that the messier series {gn}
converges uniformly to this function on (−δ, δ) for δ some sufficiently small. Hence the
sequence {qn} converges uniformly to 0 on this interval, but that’s not obvious from (2).)

(c) dy
dt

= ey, y(0) = 0. The solution of this IVP is easily found by MAP 2302 methods:
y(t) = − log(1 − t). See just how bad Picard Iteration is for this example by computing
as many gn as you can in closed form, and seeing how soon you get stuck.

(d) dy
dt

= t2+y2, y(0) = 0. This one is just to give you an example in which f(t, y) has
some t-dependence (in (a)-(c) f depended only on y), and also an example in which you
cannot find a closed-form solution by any methods you learned in MAP 2302. Compute g1

and g2 explicitly, and show by induction that each gn(t) is a polynomial whose coefficient
of tm is 0 for all m not congruent to 3 mod 4. (Thus we can write gn(t) = t3hn(t4) for
some polynomial hn.)

F2. Estimating values of certain series. Given a convergent series whose value
we don’t know how to compute exactly, it’s of interest to know how to get a good estimate
of the sum. Broadly speaking, we’d like to get as close as we can to the true value of the
sum (and know a bound on how far off we might be), while doing as little computation
as possible. In this problem, you will compare two estimation schemes for series to which
the Integral Test applies.

The proof of the Integral Test (but not simply the statement of the test in p. 161/9)
gives an important error-bound. This error bound, stated below, comes from the follow-
ing: if f is a monotone-decreasing function on [N,∞), where N ∈ N, and

∫∞
N
f(x) dx

converges, then
∑∞

n=N+1 converges and∫ ∞
N+1

f(x) dx ≤
∞∑

n=N+1

f(n) ≤
∫ ∞
N

f(x) dx. (3)

(a) Prove the double-inequality (3). (You may have already done this when you did
p. 161/9; in that case, do it again.)

(b) Let f be monotone-decreasing function on [1,∞), let an = f(n) for n ∈ N, and
for N ∈ N let sN(~a) =

∑N
n=1 an. Let EN(~a) = (

∑∞
n=1 an)− sN(~a). Up to sign (a matter

of convention), EN(~a) is the error in estimating
∑∞

n=1 an by sN(~a). Since this error can
also be written as

∑∞
n=N+1 an, (3) implies that∫ ∞

N+1

f(x) dx ≤ EN(~a) ≤
∫ ∞
N

f(x) dx. (4)

Because the left-most integral is ≥ 0, the right-hand inequality gives us an upper bound

2

on the magnitude of the error, namely

|EN(~a)| =

∣∣∣∣∣
(
∞∑
n=1

an

)
− sN(~a)

∣∣∣∣∣ ≤
∫ ∞
N

f(x) dx. (5)

But we have thrown away valuable information: the left-hand inequality in (4) gives us
a lower bound on the error—i.e. it tells us that if we estimate

∑∞
n=1 an by sN(~a), then

our estimate will be too small by at least a certain amount. We can use this fact to get a
sharper estimate without doing significantly more computation.

For f and {an} as above, define

s̃N(~a) = sN(~a) +
1

2

(∫ ∞
N+1

f(x) dx+

∫ ∞
N

f(x) dx

)
.

In other words, we add to sN(~a) the average of the upper and lower bounds on the error
EN(~a) given by (4). The error in estimating

∑∞
n=1 an by s̃N(~a) (modulo sign-convention,

again) is then ẼN(~a) := (
∑∞

n=1 an)− s̃N(~a).
Show that ∣∣∣ẼN(~a)

∣∣∣ ≤ 1

2
aN . (6)

This error-bound can be phrased qualitatively as “when the series is estimated this way,
the error is at most one-half the last term in the partial sum”.

(c) To get a sense of how much sharper the estimate s̃N(~a) is than is sN(~a), compare

the two error-bounds for
∑∞

n=1
1
n2 as follows. For N ∈ N let erbd(N), ẽrbd(N) denote

the error-bounds given by the right-hand sides of (4), (6) respectively (with f(x) = 1
x2).

For ε > 0, let N(ε), Ñ(ε) denote the smallest values of N for which erbd(N), ẽrbd(N),
respectively, is ≤ ε.

(i) Compute erbd(N), ẽrbd(N) and show that limN→∞
ẽrbd(N)
erbd(N)

= 0. Interpret
this in terms of the accuracy-gain for “worst-case scenarios” of the two estimation schemes
when you truncate the sum after the N th term. (“Worst-case scenario” means that the
actual error equals the upper bound on the error given by the estimation scheme.)

(ii) Compute N(ε), Ñ(ε) and show that limε→0
Ñ(ε)
N(ε)

= 0. Interpret this in
terms of how much work you have to do, in the two estimation schemes, to get the same
degree of guaranteed accuracy.

(d) For
∑∞

n=1
1
n2 compute N(.1), Ñ(.1), N(.005), Ñ(.005). If you’ve done problem

D5e, then, using your calculator (bet you never thought I’d say that!), find s3, s̃3, and∑∞
n=1

1
n2 (the latter by your formula from D5e), and use these to compute the actual errors

E3, Ẽ3 and the ratio Ẽ3/E3. (The last computation should exhibit that the accuracy-gain,
in this example, is even more impressive than you might have expected from part (c)(i)
above. If it doesn’t exhibit this, then redo D5e, because your answer to it is wrong!)

3

