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6 Riemann Integration

This chapter develops the theory of the Riemann integral of a real-valued function f on
a closed, bounded interval [a, b] ⊂ R. The approach we use is very intuitive, rigorizing
the “limit of Riemann sums” idea that’s presented in Calculus 1. This approach, which
uses the same definition of “Riemann integrable” as in Rosenlicht’s textbook [5], has
an additional advantage: it provides the most natural generalization to integration of
vector-valued functions. For integration of real-valued functions, however, it is not the
most efficient approach. A more efficient approach that (non-obviously) turns out to be
essentially equivalent is discussed in Section 6.4, as optional reading for the interested
student.

Throughout this chapter, when we use notation of the form “[a, b]”, it is understood
that a, b ∈ R and a < b.

The symbol “N” is used in these notes to mark the end of a definition, remark, or
example. When all that is being defined is notation specific to these notes, sometimes we
label that definition as “Notation 6.x” to avoid giving the impression that this notation
is standard among mathematicians.
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6.1 Definitions and first examples

Definition 6.1 (Partitions) A partition P of a closed, bounded interval [a, b] is a finite
set {x0, x1, . . . , xN}, where a = x0 < x1 < · · · < xN = b. N

Notation 6.2 For each partition P = {x0, x1, . . . , xN} of an interval [a, b], we define
∆j(P ) = xj − xj−1, 1 ≤ j ≤ N . When a single partition P is understood from context,
we write simply ∆j rather than ∆j(P ). N

Observe that for any partition P of [a, b], we have

∑
j

∆j(P ) = b− a. (6.1)

Definition 6.3 (Pointed partitions and Riemann sums) Let a, b ∈ R be given, with
a < b, and let P = {x0, x1, . . . , xN} be a partition of [a, b].

1. We define the width of P (also called the mesh of P ), denoted wid(P ), to be
max{∆j : 1 ≤ j ≤ N}.

2. A pointing T of P is a set T = {t1, . . . tN} such that tj ∈ [xj−1, xj] for each j ∈
{1, . . . , N}. We call the pair (P, T ) a pointed partition (of [a, b]). We define the
width of (P, T ) to be the width of P .

3. Given f : [a, b]→ R and a pointing T = {t1, . . . tN} of the partition P , the Riemann
sum for f corresponding to the pointed partition (P, T ) is

S(f ;P, T ) =
N∑
j=1

f(tj)∆j . (6.2)

4. Given f : [a, b]→ R, we will write

S(f ;P ) = {S(f ;P, T ) : T is a pointing of P}
= the set of all Riemann sums of f associated with the partition P .

N

Note that every partition {x0, . . . , xN} has a pointing (in fact, uncountably many);
e.g. we can take tj = xj for 1 ≤ j ≤ N (the “right-endpoint pointing”).

For a general pointing of a partition, with notation as in Definition 6.3, we think of
the point tj as a “sample point” within the interval [xj−1, xj], providing a “sample value”
of f on this interval.
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Remark 6.4 Observe that any interval [a, b] as above has partitions of arbitrarily small
width: given δ > 0, let N be any positive integer such that ∆ := b−a

N
< δ, let xj = a+ j∆

for 0 ≤ j ≤ N , and let P be the partition {x0, x1, . . . , xN}; we then have wid(P ) < δ.
Hence there also always exist pointed partitions of [a, b] arbitrarily small width.

Definition 6.5 (Integrability) A function f : [a, b]→ R is Riemann integrable if there
is a real number A such that for every ε > 0 there exists δ > 0 such that if (P, T ) is any
pointed partition of [a, b] of width less than δ, then |S(f ;P, T )−A| < ε. More generally,
if f is a real-valued function whose domain includes [a, b], we say that f is Riemann
integrable on [a, b] (or over [a, b]) if f |[a,b] is Riemann integrable. N

Notation 6.6 For a, b ∈ R with a < b, we will let R([a, b]) denote the set of all real-
valued functions on [a, b] that are Riemann-integrable. N

With notation as in Definition 6.5, suppose that A,A′ are two real numbers satisfying
the condition required of A in the definition. Let ε > 0 be given, and δ > 0 be such that
for every pointed partition of [a, b] of width less than δ, we have |S(f ;P, T ) − A| < ε
and |S(f ;P, T ) − A′| < ε. Let (Pδ, Tδ) be a pointed partition of [a, b] of width < δ; such
(P, T ) exists by the observation above the definition. Then |A′−A| ≤ |A′−S(f ;Pδ, Tδ)|+
|S(f ;Pδ, Tδ)− A| < 2ε. Since this is true for all ε > 0, it follows that A′ − A = 0, hence
that A′ = A. Therefore if f is integrable on [a, b], then there is a unique number A
satisfying the condition in Definition 6.5. Thus we can make the following definition:

Definition 6.7 (the Riemann integral) Let f : [a, b] → R be a Riemann-integrable
function. We define the Riemann integral of f to be the unique real number A satisfying
the condition given in Definition 6.5. This number is denoted∫ b

a

f(x) dx,

∫ b

a

f(t) dt, etc.; (6.3)

any letter not reserved with another meaning can be used in place of the “dummy” variable
x, t, etc., in the sample notation above. Since the name of the dummy variable does not
affect the value of the integral, in these notes we will also use the notation∫ b

a

f (6.4)

in place of (6.3). More generally, if f is a real-valued function on a domain that includes
[a, b], and f is integrable on [a, b], we use the same notation (6.3), (6.4) for the Riemann
integral of f |[a,b], and refer to the value of this integral as the Riemann integral of f over
[a, b].
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Any conclusion of the form
∫ b
a
f = [specific number] implicitly means “f is integrable

on [a, b] and
∫ b
a
f = [that number],” if the integrability of f has not already been stated

explicitly.

Finally, we define the phrase “
∫ b
a
f exists” (or “

∫ b
a
f(x) dx exists”, etc. for any dummy

variable), to mean that f is integrable on [a, b]. N

Definitions 6.5 and 6.7 give precise meaning to the notion that a definite integral is a
“limit of Riemann sums”. It is tempting to write, suggestively, that the value of

∫ b
a
f(x) dx

is “limwid(P )→0 S(f ;P, T )”, but this limit-notation cannot be interpreted literally. The
quantity S(f ;P, T ) is not the value of function of wid(P ), or even the value of a function
of P . For every δ > 0, there are infinitely many partitions of [a, b] of width δ, and
for every partition there are infinitely many pointings. Thus for every value of wid(P ),
there can be (and usually are) infinitely many values of Riemann sums associated with
partitions of this width. In the notation “limx→x0 g(x)” for the limit at x0 of a function
g : U \ {x0} → R, where U ⊂ R, for each x there is one and only one number g(x).
However, there are a few ways to write the integral of an integrable function as a true
limit. The following exercise gives one of these; Theorem 6.30, later in these notes, gives
another.

Exercise 6.1 Let f : [a, b]→ R be given.

(a) Prove that if f is integrable on [a, b], then for any sequence ((Pn, Tn)) of pointed
partitions for which wid(Pn)→ 0 as n→∞,

lim
n→∞

S(f ;Pn, Tn) =

∫ b

a

f(x) dx. (6.5)

(Hence the integral can be evaluated by taking such a limit, if you know ahead of
time that f is integrable.)

(b) Assume that for every sequence ((Pn, Tn)) of pointed partitions for which wid(Pn)→
0 as n → ∞, limn→∞ S(f ;Pn, Tn) exists. Prove that f is integrable on [a, b], and
that for every such sequence ((Pn, Tn)), the equality (6.5) holds.

Proposition 6.8 (“Integrable implies bounded”) If f : [a, b] → R is Riemann in-
tegrable, then f is bounded.

Proof: Let f : [a, b] → R be a Riemann-integrable function, and let A =
∫ b
a
f . Let

δ > 0 be such that for each pointed partition (P, T ) of [a, b] of width less than δ,
|S(f ;P, T )− A| < 1; equivalently
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A− 1 < S(f ;P, T ) < A+ 1 (6.6)

(such δ exists by the definition of integrability). Fix a partition P = {x0, . . . xN} of [a, b]
of width less than δ. Then (6.6) holds for every pointing T of P .

Assume that f is unbounded from above. Then f is unbounded from above on at
least one of the intervals Ij := [xj−1, xj], since there are only finitely many such intervals.
Let j0 ∈ {1, . . . , N} be such that f is unbounded from above on Ij0 . For each n ∈ N,
choose zn ∈ Ij0 such that f(zn) > n. For each j ∈ {1, . . . , N} with j 6= j0, fix any number

tj ∈ [xj−1, xj], let T (n) be the pointing {t(n)1 , . . . , t
(n)
N } of P for which t

(n)
j =

{
tj if j 6= j0,
zn if j = j0 ,

and let A′ =
∑

j 6=j0 f(tj)∆j. Then

S(f ;P, T (n)) = A′ + f(zn)∆j0 > A′ + n∆j0

For n sufficiently large, we have A′ + n∆j0 > A + 1, contradicting the second inequality
in (6.6). Hence f is bounded from above.

If f is unbounded from below, a similar argument shows that the first inequality in
(6.6) is contradicted. Hence f is bounded from below as well as from above, and is
therefore bounded.

An argument similar to the one preceding Definition 6.7 leads to a useful necessary
criterion for integrability:

Proposition 6.9 If f : [a, b] → R is Riemann integrable, then for every ε > 0 there
exists δ > 0 such that if (P, T ) and (Q, T ′) are pointed partitions of [a, b] of width less
than δ, we have |S(f ;P, T )− S(f ;Q, T ′)| < ε.

We omit the proof here, since this proposition is part of a more powerul result we
will prove later (Theorem 6.30), and we want to get quickly to some simple examples of
integrable and non-integrable functions. We will use Proposition 6.9 in its contrapositive
form: for any given f : [a, b] → R, if there exists ε0 > 0 such that, for all δ > 0, there
exist pointed pointed partitions (P, T ), (Q, T ′) of [a, b] of width less than δ for which
|S(f ;P, T )− S(f ;Q, T ′)| ≥ ε0, then f is not Riemann integrable.

Example 6.10 For any c ∈ R, the constant function f : [a, b]→ R given by f(x) = c is
integrable, and ∫ b

a

c dx = c(b− a).

This follows from the fact that, as the student may check, every Riemann sum for f
has the value c(b− a). N
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In particular, R([a, b]) is nonempty!

Example 6.11 Define f : [a, b] → R by f(x) = 1 if x ∈ Q and f(x) = 0 if x /∈ Q. Let
P = {x0, . . . , xN} be a partition of [a, b]. For 1 ≤ j ≤ N choose tj, t

′
j ∈ [xj−1, xj] such that

tj ∈ Q and t′j /∈ Q. Let T = {t1, . . . , tN}, T ′ = {t′1, . . . , t′N}. Then the Riemann sums of
f corresponding to the pointed partitions T, T ′ respectively are Then, the corresponding
Riemann sum is

S(f ;P, T ) =
∑
j

f(tj)∆j =
∑
j

∆j = b− a

and
S(f ;P, T ′) =

∑
j

f(t′j)∆j =
∑
j

0 = 0.

Hence S(f ;P, T )− S(f ;P, T ′) = b− a. Since this is true regardless of how small wid(P )
is, it follows that f is not Riemann integrable (in the contrapositive form of Proposition
6.9 that we stated above, take ε0 = b− a, take δ arbitrary, and take Q = P ). N

Definitions 6.5 and 6.7 are very intuitive, and, as we shall see later, generalize naturally
to the integration of vector-valued functions (functions [a, b]→ V , where V is a complete
normed vector space). However, these definitions can be unwieldy at times; it can be
a chore to show the integrability of functions that are any more complicated than the
constant function in Example 6.10 or the function in Example 6.36. In the interests
of efficiency, we postpone presenting other examples until we have developed equivalent
definitions that are (often) easier to work with.

For simplicity, henceforth in these notes we will say simply that f is integrable
on [a, b] if f is Riemann integrable on [a, b], and refer to

∫ b
a
f as the integral of f

over [a, b]. The student is cautioned that there are more general types of integrability—in
particular, a type called Lebesgue integrability—and that usually when mathematicians
say to each other (or to graduate students) that a function on [a, b] is integrable, they
mean Lebesgue-integrable. The analog of Proposition 6.8 is false for Lebesgue-integrable
functions, and even for functions for which we define an improper integral as in Calculus
2. Indeed, the fact that no unbounded function is Riemann integrable is viewed as a
weakness of Riemann integration compared to more-general forms of integration.

6.2 Linearity and order properties of the Integral

Proposition 6.12 Let f, g : [a, b]→ R and c ∈ R be given. If both f and g are integrable,
then so are f + g and cf , and the following equalities hold:∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g. (6.7)∫ b

a

cf = c

∫ b

a

f. (6.8)
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Proof: From the definition (6.2), we easily see that, for any pointed partition (P, T ) of
[a, b], we have S(f + g;P, T ) = S(f ;P, T ) + S(g;P, T ) and S(cf ;P, T ) = cS(f ;P, T ).

Assume now that f and g are integrable, and let A =
∫ b
a
f,B =

∫ b
a
g. Let ε > 0 be

given, and let δ1, δ2 > 0 be such that if (P, T ) is a pointed partition of width less than
δ1 (respectively, δ2) then |S(f ;P, T )− A| < ε (resp., |S(g;P, T )− B| < ε). Then for any
pointed partition (P, T ) of width less than min{δ1, δ2}, we have

|S(f + g;P, T )− (A+B)| = |(S(f ;P, T )− A) + (S(g;P, T )−B)|
≤ |S(f ;P, T )− A|+ |S(g;P, T )−B|
< 2ε.

It follows that f+g is integrable and that (6.7) holds. Similarly, for any pointed partition
(P, T ) of [a, b] of width less than δ1,

|S(cf ;P, T )− cA| = |cS(f ;P, T )− cA| = |c| |S(f ;P, T )− A| ≤ |c|ε,

from which the integrabilty of cf and the equality (6.8) follow.

Remark 6.13 The proof of Proposition 6.12 illustrated something that comes up in
innumerable proofs. As you may have learned in MAA 4211, in proofs we are quite often
in a situation of a form like the following: Statement 1 is true for all x ∈ (0, δ1) (or for
all n > N1), statement 1 is true for all x ∈ (0, δ2) (or for all n > N2), . . . , statement k
is true for all x ∈ (0, δk) (or for all n > Nk). We then say “Let δ = min{δ1, δ2, . . . , δk}”
(or “Let N = max{N1, . . . , Nk}”), and are then guaranteed that all k statements are true
for all x ∈ (0, δ) (or for all n ≥ N). As long as there are only finitely many statements
involved (typically there are only two), this device always works. Once the student has
had sufficient experience, he/she should not have trouble following proofs in several of
these intermediate steps are omitted. For example, in the proof of Proposition 6.12, we
could have replaced the third and fourth sentences with, “Let ε > 0 be given, and let δ > 0
be such that if (P, T ) is a pointed partition of width less than δ then |S(f ;P, T )−A| < ε
and |S(g;P, T ) − B| < ε. Then for any pointed partition (P, T ) of width less than δ,
we have . . . .” By the end of MAA 4211, students should definitely have had enough
experience to be comfortable with such arguments (but should always know how to justify
them the “long way”). So, henceforth in these notes, we will use this device to
shorten arguments whenever we can.

Observe that, sinceR([a, b]) is nonempty, Proposition 6.12 can be phrased alternatively
as follows:

Proposition 6.14 (Linearity of the integral) The set R([a, b]) is a vector space, and

the map f 7→
∫ b
a
f is a linear map R([a, b])→ R.
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The integration-map f 7→
∫ b
a
f also has the following “non-negativity” property:

Proposition 6.15 Assume that f : [a, b] → R is integrable and that f(x) ≥ 0 for all

x ∈ [a, b]. Then
∫ b
a
f ≥ 0.

Exercise 6.2 Prove Proposition 6.15.

Corollary 6.16 (Order property of the integral) Assume that f, g : [a, b] → R are

integrable and that f(x) ≥ g(x) for all x ∈ [a, b]. Then
∫ b
a
f ≥

∫ b
a
g.

Proof: Let h = f − g. Then h ∈ R([a, b]) (by Proposition 6.14) and h(x) ≥ 0 for all
x ∈ [a, b]. Hence

0 ≤
∫ b

a

h =

∫ b

a

(f − g) =

∫ b

a

f −
∫ b

a

g,

and the result follows.

6.3 Upper and lower sums

Since unbounded functions are not (Riemann-)integrable (Proposition 6.8), we will sim-
plify some parts of the presentation below by restricting attention to bounded functions.

Notation 6.17 We will write B([a, b]) for the set of bounded real-valued functions on
[a, b]. N

Thus, Proposition 6.8 can be written succinctly as: R([a, b]) ⊂ B([a, b]).

Definition 6.18 For each function f : [a, b]→ R and P ∈ P([a, b]), we define

S(f ;P ) = {S(f ;P, T ) : T is a pointing of P} ⊂ R

= the set of all Riemann sums of f associated with P ,

U(f ;P ) = sup(S(f ;P )),

L(f ;P ) = inf(S(f ;P )).

The quantities U(f ;P ), L(f ;P ) are called, respectively, the upper and lower sums of f
with respect to P . N

Observe that, trivially, in the setting of Definition 6.18 we have

L(f ;P ) ≤ U(f ;P ). (6.9)
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Example 6.19 Let f : [0, 1] → R be the squaring function: f(x) = x2. For each
positive integer N , let PN = {xj := j

N
: 0 ≤ j ≤ N}, a partition of [0, 1]. The points

of this partition are equally spaced: ∆j(PN) = 1
N

for each j ∈ {1, 2 . . . , N}.1 Let T =
{t1, . . . , tN} be a pointing of PN . Then

S(f ;PN , T ) =
N∑
j=1

t2j ∆j(PN) =
N∑
j=1

t2j
1

N
.

For the jth term in the sum, we have j−1
N

= xj−1 ≤ tj ≤ xj = j
N

, implying (j−1)2
N2 ≤ t2j ≤

j2

N2

Hence
N∑
j=1

(j − 1)2

N2

1

N
≤ S(f ;PN , T ) ≤

N∑
j=1

j2

N2

1

N
. (6.10)

Morever, if we take T to be the “right-endpoint pointing” of PN (i.e. tj = xj for 1 ≤
j ≤ N) then the value of S(f ;PN , T ) is exactly the rightmost sum in (6.10), while if we
take T to be the “left-endpoint pointing” of PN (i.e. tj = xj−1 for 1 ≤ j ≤ N) then
the value of S(f ;PN , T ) is exactly the leftmost sum in (6.10). Hence, using the fact that∑N

j=1 j
2 = N(N+1)(2N+1)

6
(which is easily proven by induction, and which you may have

learned in high school), it follows from (6.10) that

U(f ;PN) =
1

N3

N∑
j=1

j2 =
1

N3

N(N + 1)(2N + 1)

6

=
1

3
+

1

2N
+

1

6N2

and that

L(f ;PN) =
1

N3

N∑
j=1

(j − 1)2 =
1

N3

N−1∑
j=1

j2 =
1

N3

(N − 1)N(2N − 1)

6

=
1

3
− 1

2N
+

1

6N2
.

N

Remark 6.20 In Example 6.19, the fact that the supremum U(f ;PN) = sup(S(f ;PN))
and infimum L(f ;PN) = inf(S(f ;PN)) were achieved by, respectively, the right-endpoint
and left-endpoint pointings of PN , was a consequence of having chosen the function f in
this example to be monotone-increasing on the interval of interest, [0, 1]. In this example,
U(f ;PN) and L(f ;PN) turned out to be the maximal and minimal Riemann sums of f for

1A partition with equally-spaced points is sometimes called a regular partition.
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this partition. For a general function f : [a, b]→ R (bounded or otherwise), and partition
P (with or without equally-spaced points) the values U(f ;P ) and L(f ;P ) may not be
achieved by any pointings of P , let alone by the left-endpoint or right-endpoint pointings;
there be no maximal or minimal Riemann sums. Never forget that “sup” and “inf” are
more general concepts than “max” and “min”, and that you cannot replace “sup” by
“max” (or “inf” by “min”) unless you have shown that the supremum (or infimum) of
the set in question lies in that set. N

Proposition 6.21 Let f : [a, b] → R be a bounded function, let M =
sup{f(x) : x ∈ [a, b]} and m = inf{f(x) : x ∈ [a, b]}, and let P be a partition of [a, b].
Then for all S ∈ S(f ;P ), we have

m(b− a) ≤ S ≤M(b− a), (6.11)

and hence
m(b− a) ≤ L(f ;P ) ≤ U(f ;P ) ≤M(b− a). (6.12)

Proof: Let S ∈ S(f ;P ). Then S = S(f ;P, T ) for some pointing T of P , so (6.11) follows
from the Riemann-sum definition (6.2) and the fact that

∑
j ∆j = b − a. The first and

third inequalities in (6.12) follow immediately from (6.11) and the definitions of L(f ;P )
and U(f ;P ), and the middle inequality is simply the trivially-true inequality (6.9).

Notation 6.22 Let a, b ∈ R, with a < b, be given. We let P([a, b]) denote the set of
partitions of [a, b], and, for each δ > 0, let Pδ([a, b]) ⊂ P([a, b]) denote the set of partitions
of [a, b] of width less than δ. N

Notation 6.23 For each function f : [a, b]→ R and each δ > 0, we define the following:

Sδ(f) =
⋃
{S(f ;P ) : P ∈ Pδ([a, b])}

= {all Riemann sums of f associated to partitions of width less than δ},
Uδ(f) = sup(Sδ(f)),

Lδ(f) = inf(Sδ(f)).

N

Remark 6.24 The definition of “
∫ b
a
f = A” can now be rewritten simply as: for each

ε > 0 there exists δ > 0 such that, for all S ∈ Sδ(f), we have |S − A| < ε. Even

more simply:
∫ b
a
f = A if (and only if) for each ε > 0 there exists δ > 0 such that

Sδ(f) ⊂ (A− ε, A+ ε). N
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Lemma 6.25 Let {Xα : α ∈ A} be a collection of nonempty subsets Xα of R indexed by
a nonempty set A. Then

sup
(⋃
{Xα : α ∈ A}

)
= sup{sup(Xα) : α ∈ A}

and inf
(⋃
{Xα : α ∈ A}

)
= inf{inf(Xα) : α ∈ A}.

Exercise 6.3 Prove Lemma 6.25.

Applying Lemma 6.25 to the indexed collection {S(f ;P ) : P ∈ Pδ([a, b])} in the
setting of Notation 6.23, we have

Uδ(f) = sup{sup(S(f ;P )) : P ∈ Pδ([a, b])}
= sup{U(f ;P ) : P ∈ Pδ([a, b])}, (6.13)

and similarly

Lδ(f) = inf{L(f ;P ) : P ∈ Pδ([a, b])}. (6.14)

Lemma 6.26 Let f ∈ B([a, b]) be given. Let m,M ∈ R be, respectively, the infimum and
the supremum of range(f). Then for each δ > 0 and each partition P of [a, b] of width
less than δ,

m(b− a) ≤ Lδ(f) ≤ L(f ;P ) ≤ U(f ;P ) ≤ Uδ(f) ≤M(b− a). (6.15)

Proof: The inequalities Lδ(f) ≤ L(f ;P ) and U(f ;P ) ≤ Uδ(f) follow from (6.14) and
(6.13), respectively. The remaining inequalities follow from (6.12).

Note that (6.15) implies, among other things, that

Lδ(f) ≤ Uδ(f). (6.16)

Proposition 6.27 Let f ∈ B([a, b]) be given. Define functions h1, h2 : (0,∞)→ R by

h1(δ) = Lδ(f)

and h2(δ) = Uδ(f).

Then h1 is monotone decreasing, h2 is monotone increasing, and both functions are
bounded.

11



Proof: For δ1, δ2 ∈ R with δ1 < δ2, every partition of width less than δ1 also has width
less than δ2. Hence Pδ1([a, b]) ⊂ Pδ2([a, b]), implying that Sδ1(f) ⊂ Sδ2(f). But for any
nonempty subsets A,B of R with A ⊂ B, we have inf(A) ≥ inf(B) and sup(A) ≤ sup(B).
Hence Lδ1(f) ≥ Lδ2(f) and Uδ1(f) ≤ Uδ2(f).

This proves the asserted monotonicity. Boundedness follows from (6.15). (In the
notation of (6.15), the ranges of both h1 and h2 lie in [m(b− a),M(b− a)].)

Lemma 6.28 Let I ⊂ R be an interval bounded from below, and let c be the left endpoint
of Ī (the closure of I); equivalently, let c = inf(I).

(i) If h : I \ {c} → R is an increasing function that is bounded from below, then

lim
u→c

h(u) = inf(range(h)). (6.17)

(ii) If h : I \ {c} → R is a decreasing function that is bounded from above, then

lim
u→c

h(u) = sup(range(h)). (6.18)

In particular, under the indicated hypotheses, the limits above exist.

Proof: Let u1 ∈ I \ {c} be such that h(u1) < α+ ε; such u1 exists since (by definition of
“inf”) α+ ε is not a lower bound of range(h). Let r = u1 − c; thus r > 0 and u1 = c+ r.
Then for all u with c < u < c + r we have α ≤ h(u) ≤ h(u1) < α + ε. Thus for all
u ∈ I \{c} for which |u− c| < r, we have |h(u)−α| = h(u)−α < ε. Since ε was arbitrary,
this establishes that limu→c h(u) = α.

This proves (i). Statement (ii) can be deduced by applying (i) to the function −h.

Corollary 6.29 Let f ∈ B([a, b]) be given. Then limδ→0 Lδ(f) and limδ→0 Uδ(f) both
exist, and

lim
δ→0

Lδ(f) ≤ lim
δ→0

Uδ(f). (6.19)

Proof: Let h1, h2 : (0,∞) → R be the functions defined in Proposition 6.27. By the
Proposition, each of these functions is monotone and bounded, so Lemma 6.28 implies
that the limits in (6.19) exist. Since both these limits exist, and Lδ(f) ≤ Uδ(f) for each
δ > 0, the inequality (6.19) follows.

We can now recast integrability in terms of the limits in Corollary 6.29:

12



Theorem 6.30 For each f ∈ B([a, b]), the following are equivalent:

(i) f is integrable over [a, b].

(ii) limδ→0 Lδ(f) = limδ→0 Uδ(f).

(iii) limδ→0(Uδ(f)− Lδ(f)) = 0.

(iv) For every ε > 0 there exists δ > 0 such that for all S1, S2 ∈ Sδ(f), |S2 − S1| < ε.

In the integrable case, ∫ b

a

f = lim
δ→0

Lδ(f) = lim
δ→0

Uδ(f). (6.20)

Proof: Let f ∈ B([a, b]) be given, and recall from Remark 6.24’s rewritten definition

of “
∫ b
a
f = A” can be written as: for all ε > 0 there exists δ > 0 such that Sδ(f) ⊂

(A− ε, A + ε). We will establish the equivalence of (i), (ii), (iii) by showing that each of
(i) and (iii) is equivalent to (ii).

(i) =⇒ (ii), plus last sentence of Proposition.

Assume that f is integrable over [a, b], and let A =
∫ b
a
f . Let ε > 0 be given, and let

δ > 0 be such that Sδ(f) ⊂ (A − ε, A + ε) (see Remark 6.24). Then, by definition, both
Lδ(f) and Uδ(f) lie in [A− ε, A+ ε], implying that |Lδ(f)−A| ≤ ε and |Uδ(f)−A| ≤ ε.
Since ε was arbitrary, it follows that limδ→0 Lδ(f) = A = limδ→0 Uδ(f). This implies both
statement (ii) and the last sentence of the Proposition.

(ii) ⇐⇒ (iii)

By Corollary 6.29, both limδ→0 Uδ(f) and limδ→0 Lδ(f) exist. Hence limδ→0(Uδ(f) −
Lδ(f)) = limδ→0 Uδ(f)− limδ→0 Lδ(f). The equivalence of (ii) and (iii) is immediate from
this equality.

(ii) =⇒ both (i) and (iv)

Let ε > 0 be given. Let δ1 > 0, δ2 > 0 be such that if 0 < δ ≤ δ1 then |Lδ(f)−A| < ε,
and if 0 < δ ≤ δ2 then |Uδ(f) − A| < ε; such δ1, δ2 exist since limδ→0 Lδ(f) = A =
limδ→0 Uδ(f). Let δ = min{δ1, δ2}. Then for all S ∈ Sδ(f),

A− ε < Lδ(f) ≤ S ≤ Uδ(f) < A+ ε,

implying that Sδ(f) ⊂ (A− ε, A+ ε). Hence
∫ b
a
f = A, so (i) is true. Furthermore, for all

S1, S2 ∈ Sδ(f) we have |S2 − S1| < 2ε. Since ε was arbitrary, this establishes (iv).

(iv) =⇒ (iii)

13



Assume that (iv) holds. Let δ0 > 0 be such that for all S1, S2 ∈ Sδ0(f), |S2 − S1| < ε.
Then 0 ≤ Uδ0(f) − Lδ0(f) = sup(Sδ0(f)) − inf(Sδ0(f) ≤ ε. The monotonicities of the
functions δ 7→ Lδ(f), δ 7→ Uδ(f) established in Proposition 6.27 imply that for all δ ∈
(0, δ0], we have

Lδ0(f) ≤ Lδ(f) ≤ Uδ(f) ≤ Uδ0(f).

Hence for all such δ, 0 ≤ Uδ(f)− Lδ(f) ≤ Uδ0(f)− Lδ0(f) ≤ ε. Since, by Corollary 6.29,
limδ→0 Uδ(f) and limδ→0 Lδ(f) both exist, so does limδ→0(Uδ(f)−Lδ(f)), and by the basic
order-property established in MAA 4211 for limits of real-valued functions,

0 ≤ lim
δ→0

(Uδ(f)− Lδ(f)) ≤ ε. (6.21)

Since ε was arbitrary, (6.21), this implies that limδ→0(Uδ(f)− Lδ(f)) = 0.

Remark 6.31 Since every Riemann-integrable function is bounded, Proposition 6.9 amounts
to the “(i) =⇒ (iv)” implication in Theorem 6.30. N

Remark 6.32 Statement (iv) in Theorem 6.30 can be thought of, loosely, as a “Cauchy
criterion for the convergence of Riemann sums” (with “convergence of Riemann sums”
interpreted heuristically, since the set of Riemann sums of a function f on [a, b] is not a
sequence). N

Remark 6.33 The equivalence of (i) and (iv) in Theorem 6.30 can be proven without any
use of upper and lower sums. We will give such a proof later, when we discuss integration
of vector-valued functions. N

The following characterization of upper and lower sums, worthwhile for its own sake,
simplifies our work when we apply Theorem 6.30 to compute integrals or prove integra-
bility.

Proposition 6.34 Let f ∈ B([a, b]) be given, and let P = {x0, . . . , xN} be a partition of
[a, b]. For 1 ≤ j ≤ N , let

mj = inf{f(x) : xj−1 ≤ x ≤ xj} and Mj = sup{f(x) : xj−1 ≤ x ≤ xj}.

Then

L(f ;P ) =
N∑
j=1

mj∆j and U(f ;P ) =
N∑
j=1

Mj∆j . (6.22)
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Proof: Since f(x) ≤Mj for all x ∈ [xj−1, xj], 1 ≤ j ≤ N , it is clear that for any pointing

T of P we have S(f ;P, T ) ≤
∑

jMj∆j, so
∑N

j=1Mj∆j is an upper bound for S(f ;P ).

Now let ε > 0 be given. For each j ∈ {1, 2, . . . , N}, let tj ∈ [xj−1, xj] be such that
f(tj) > Mj − ε

b−a ; such tj exists by the definition of Mj. Let T = {t1, . . . , tN}. Then T is
a pointing of P , and

S(f ;P, T ) =
N∑
j=1

f(tj)∆j >
∑
j

(
Mj −

ε

b− a

)
∆j =

(∑
j

Mj∆j

)
− ε

b− a
∑
j

∆j

=

(∑
j

Mj∆j

)
− ε.

Hence no number smaller than
∑

jMj∆j is an upper bound for S(f ;P ). Thus
∑

jMj∆j

is the least upper bound (= supremum) of S(f ;P ), yielding the second equality in (6.22).
A similar argument (left to the student) establishes the first equality.

Definition 6.35 Let A be a set and let B be a nonempty subset of A. The characteristic
function2 of B is the function χB : A→ R defined by

χB(p) =

{
1 if p ∈ B,
0 if p /∈ B.

N

For example, the function in Example 6.11 is simply the restriction of χQ to [a, b]
(regarding Q as a subset of R). The characteristic function of any interval (including a
one-point interval) is an example of a step function; see Definition 6.40.

The next example and our proof of the next proposition illustrate how Theorem 6.30
can be used.

Example 6.36 Fix c ∈ [a, b] and let f = χ{c} : [a, b] → R. Let δ > 0 and let P =
{x0, . . . xN}) be a partition of [a, b] of width less than δ. With notation as in Proposition
6.34, mj = 0 for every j, and Mj = 0 unless c ∈ [xj−1, xj]; the latter can happen for at
most two values of j. When nonzero, the value of Mj is 1. Hence, using (6.22), we have

0 = L(f ;P ) ≤ U(f ;P ) < 2δ.

2In some areas of mathematics, such as probability, characteristic functions are called indicator func-
tions, and the notation 1B is used instead of χB .
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Since this holds for all P ∈ Pδ([a, b]), it follows that

0 ≤ Lδ(f) ≤ Uδ(f) ≤ 2δ.

Using the Squeeze Theorem and Theorem 6.30, we conclude that∫ b

a

f = 0.

N

Proposition 6.37 Suppose that a ≤ c < d ≤ b. Then the characteristic function χ(c,d) :
[a, b]→ R is integrable, and ∫ b

a

χ(c,d) = d− c.

Proof: To streamline notation in this proof, let f = χ(c,d).We will show that limδ→0 Lδ(f) =
limδ→0 Uδ(f) = d − c. For this, it suffices to restrict attention to δ less than any fixed,
positive number; in particular, to δ < d− c.

Let δ ∈ (0, d − c) be given and let P = {x0, . . . , xN} be a partition of [a, b] of width
less than δ, and j1, j2 be the unique indices in {1, . . . , N} such that c ∈ [xj1−1, xj1) and
d ∈ (xj2−1, xj2 ]. Then, since for all j ∈ {1, . . . , N} we have xj < xj−1 + δ < xj−1 + (d− c),

c < xj1 < xj1−1 + δ < c+ δ < d

and
d > xj2−1 > xj2 − δ > d− δ > c.

Hence both xj1 and xj2−1 lie in (c, d), and therefore so does xj if j1 − 1 ≤ j ≤ j2.

For j ∈ {1, . . . , N}, let mj,Mj be as in Proposition 6.34; obeserve that each of these
numbers is either 0 or 1. Then for each j ∈ {1, . . . , N} we have the following:

If j < j1 or j > j2 then [xj−1, xj] ∩ (c, d) = ∅, so mj = Mj = 0.
If j1 < j < j2 then [xj−1, xj] ⊂ (c, d), so mj = Mj = 1.
If j = j1 or j = j2 then 0 ≤ mj ≤Mj ≤ 1.

(As will be seen, more precise information about the indices j1, j2 is unnecessary, so we
do not waste time on that.) Therefore, using (6.22),

U(f ;P ) ≤ ∆j1 +

(
j2−1∑
j=j1+1

∆j

)
+ ∆j2 < δ + (xj2−1 − xj1) + δ < (d− c) + 2δ
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and, since xj2−1 > xj2 − δ ≥ d− δ and xj1 < xj1−1 + δ ≤ c+ δ,

L(f ;P ) ≥
j2−1∑
j=j1+1

∆j = xj2−1 − xj1 ≥ (d− δ)− (c+ δ) = (d− c)− 2δ.

Since the above inequalities hold for all P ∈ Pδ([a, b]), it follows that

(d− c)− 2δ ≤ Lδ(f) ≤ Uδ(f) ≤ (d− c) + 2δ.

The result now follows from the Squeeze Theorem and Theorem 6.30.

Proposition 6.38 Let f, g : [a, b] → R. Assume that f is integrable and that g differs
from f at only finitely many points (i.e. that there are only finitely many x ∈ [a, b] for

which g(x) 6= f(x)). Then g is integrable, and
∫ b
a
g =

∫ b
a
f .

Proof: Let x1, . . . , xn be the values of x for which g(x) 6= f(x) (we may assume there is at
least one such value, since otherwise g = f and the conclusion is trivial). Let h = g − f .
Then h(x) = 0 for all x /∈ {x1, . . . , xn}, so h is a linear combination of the functions
χ{x1}, . . . , χ{xn}; specifically, h =

∑
i ciχ{xi} where ci = h(xi). By Proposition 6.14 and

Example 6.36, h is integrable and∫ b

a

h =
∑
i

ci

∫ b

a

χ{xi} =
∑
i

ci · 0 = 0.

But g = f + h, so g is the sum of two integrable functions. Using Proposition 6.14, the
conclusion follows.

Corollary 6.39 Let I ⊂ [a, b] be an interval, and let c ≤ d be the left and right endpoints,

respectively, of Ī. Then χI : [a, b]→ R is integrable and
∫ b
a
χI = d− c.

Exercise 6.4 Prove Corollary 6.39.

Definition 6.40 A function f : [a, b] → R is a step function if there exists a partition
{x0, . . . xN} of [a, b] such that for each j ∈ {1, . . . , N}, f is constant on the open interval
(xj−1, xj). N

Lemma 6.41 If f : [a, b] → R is a step-function, then f is a linear combination of
characteristic functions of intervals.
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Proof: Let f : [a, b] → R be a step-function, let P = {x0, . . . xN} ∈ P([a, b]) be such
that for each j ∈ {1, . . . , N}, f |(xj−1,xj) is constant, and for each such j let cj denote the
(constant) value of f |(xj−1,xj). Then, as is easily verified,

f =
N∑
j=1

cjχ(xj−1,xj) +
N∑
j=0

f(xj)χ{xj}, (6.23)

a linear combination of characteristic functions of intervals.

Exercise 6.5 Prove the converse of Lemma 6.41. (Note that in the phrase “linear com-
bination of characteristic functions of intervals”, it is not given that the intervals do not
overlap.)

Proposition 6.42 Let f : [a, b] → R be a step-function, and let P,N and c1, . . . , cN be
as in Lemma 6.41. Then f is integrable and∫ b

a

f =
N∑
j=1

cj∆j(P ).

Proof: This follows from equation 6.23, Proposition 6.14, and Corollary 6.39.

Proposition 6.43 (“Step-function lemma”) A function f ∈ B([a, b]) is integrable if
and only if for each ε > 0, there exists a partition P of [a, b] such that

U(f ;P )− L(f ;P ) < ε. (6.24)

Remark 6.44 The strength of Proposition 6.43 is that there is no reference to the width
of the partition P . This makes the Proposition much simpler to apply than many of our
results up till now. N

Proof of Proposition 6.43:

( =⇒ ) Assume that f is integrable. Then by Theorem 6.30, limδ→0(Uδ(f)−Lδ(f)) = 0.
Let ε > 0 be given, and let δ > 0 be such that Uδ(f)− Lδ(f) < ε; such δ exists since the
above limit is 0. Let P be any partition of width less than δ. Then, by (6.15), we have
U(f ;P )− L(f ;P ) ≤ Uδ(f)− Lδ(f) < ε.

(⇐=) Assume that for each ε > 0, there exists a partition P of [a, b] such that
U(f ;P )− L(f ;P ) < ε.
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Let ε > 0 be given, and left P = {x0, . . . , xN} ∈ P([a, b]) be such that
U(f ;P ) − L(f ;P ) < ε. For 1 ≤ j ≤ N let Mj and mj be as in Proposition 6.34.
Let m = inf{f(x) : x ∈ [a, b]} and M = sup{f(x) : x ∈ [a, b]} Define functions
f1, f2 : [a, b]→ R by

f1 =
N∑
j=1

mjχ(xj−1,xj) +mχP =
N∑
j=1

mjχ(xj−1,xj) +
N∑
j=0

mχ{xj}

f2 =
N∑
j=1

Mjχ(xj−1,xj) +MχP =
N∑
j=1

Mjχ(xj−1,xj) +
N∑
j=0

Mχ{xj}.

Observe also that
f1(x) ≤ f(x) ≤ f2(x) (6.25)

for every x ∈ [a, b]. Furthermore, f1 and f2 are step functions, hence are integrable, and
from Proposition 6.42 we have∫ b

a

f1 =
N∑
j=1

mj∆j(P ) = L(f ;P ) (6.26)

and

∫ b

a

f2 =
N∑
j=1

Mj∆j(P ) = U(f ;P ). (6.27)

Let δ > 0 be such that

Sδ1(f1) ⊂ (L(f ;P )− ε, L(f ;P ) + ε) (6.28)

and Sδ2(f2) ⊂ (U(f ;P )− ε, U(f ;P ) + ε); (6.29)

such δ exists by (6.26)–(6.27) (see Remark 6.24). Let (Q, T ) be any pointed partition
of [a, b] of width less than δ. From (6.25) and the definition of “Riemann sum”, it is
immediate that S(f1;Q, T ) ≤ S(f ;Q, T ) ≤ S(f2;Q, T ). But S(f1;Q, T ) ∈ Sδ1(f1) and
S(f2;Q, T ) ∈ Sδ2(f2). Thus, using (6.28)–(6.29), we have

L(f ;P )− ε < S(f1;Q, T ) ≤ S(f ;Q, T ) ≤ S(f2;Q, T ) < U(f ;P ) + ε. (6.30)

Now let S1, S2 ∈ Sδ(f). By (6.30), both S1 and S2 lie in the interval
(L(f ;P )− ε, U(f ;P ) + ε). Hence

|S2 − S1| ≤ (U(f ;P ) + ε)− (L(f ;P )− ε) = (U(f ;P )− L(f ;P )) + 2ε < 3ε

(using our initial hypothesis). Theorem 6.30 (specifically, the implication “(iii) =⇒ (i)”)
therefore implies that f is integrable.
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Remark 6.45 Our proof shows that Proposition 6.43 is equivalent to the more easily
visualized statement: A function f ∈ B([a, b]) is integrable if and only if for each ε > 0,
there exist step-functions f1, f2 : [a, b] → R such that f1(x) ≤ f(x) ≤ f2(x) for all

x ∈ [a, b] (f is “squeezed” between f1 and f2) such that
∫ b
a
(f2 − f1) =

∫ b
a
f2 −

∫ b
a
f1 < ε.

N

Exercise 6.6 Prove that if f is integrable on [a, b] then so is |f | (the function x 7→ |f(x)|),
and ∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f |.

6.4 Upper and lower integrals

This section is optional reading.

Definition 6.46 For any f : [a, b]→ R, we define the lower and upper Riemann integrals
of f over [a, b] to be

¯

∫ b

a

f = sup{L(f ;P ) : P ∈ P([a, b])},

¯∫ b

a

f = inf{U(f ;P ) : P ∈ P([a, b])},

respectively. We will frequently omit “Riemann” from this terminology, and may write the
lower and upper integrals using dummy-variable notation, e.g. “

∫̄ b
a
f(x) dx” for “

∫̄ b
a
f.”

N

In words: the lower integral is the supremum of lower sums, while the the upper
integral is the infimum of upper sums

Now consider any fixed, arbitrary, f ∈ B([a, b]). Using Proposition 6.27 and Lemma
6.28, we can express the limits of Uδ(f) and Lδ(f) (as δ → 0) as follows:

lim
δ→0

Uδ(f) = inf
δ>0

(sup{U(f ;P ) : P ∈ Pδ([a, b])});

lim
δ→0

Lδ(f) = sup
δ>0

({inf{U(f ;P ) : P ∈ Pδ([a, b])}).

For each δ > 0 and P ∈ Pδ([a, b]), we have U(f ;P ) ≥ L(f ;P ). Hence, using Lemma 6.25,
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inf
δ>0

(sup{U(f ;P ) : P ∈ Pδ([a, b])}) ≥ inf
δ>0

(inf{U(f ;P ) : P ∈ Pδ([a, b])})

= inf

(⋃
δ>0

{{U(f ;P ) : P ∈ Pδ([a, b])}

)
= inf{U(f ;P ) : P ∈ P([a, b]}

=
¯∫ b

a

f.

Thus

lim
δ→0

Uδ(f) ≥
¯∫ b

a

f, (6.31)

and similarly lim
δ→0

Lδ(f) ≤
¯

∫ b

a

f. (6.32)

We will show that the inequalities (6.31)–(6.32) can be sharpened to equalities when
f is integrable, but some preliminary work is needed first.

Definition 6.47 Let P and Q denote partitions of [a, b]. We say Q is a refinement of P ,
or that Q refines P , if P ⊂ Q. The common refinement of P and Q is P ∪Q. N

Lemma 6.48 Let f : [a, b]→ R be given.

(i) Let P and Q be partitions of [a, b], and assume that Q refines P . Then

L(f ;P ) ≤ L(f ;Q) ≤ U(f ;Q) ≤ U(f ;P ). (6.33)

(ii) For any partitions P,Q of [a, b],

L(f ;P ) ≤ U(f ;Q). (6.34)

(iii) The upper and lower integrals satisfy

¯

∫ b

a

f(x) dx ≤
¯∫ b

a

f(x) dx. (6.35)
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Sketch of proof. (i) The middle inequality in (6.33) is simply (6.9). The first and third
inequalities can be reduced to the case in which P = {a, b} and Q = {a, c, b}, where
the result is quickly established by comparing the Riemann sums associated with Q with
those associated with P .

(ii) Let P and Q be partitions of [a, b], and let R be their common refinement. Applying
(i) twice, we obtain

L(f ;P ) ≤ L(f ;R) ≤ U(f ;R) ≤ U(f ;Q).

Hence (6.34) holds.

(iii) For each partition Q, taking the supremum over all partitions P in (6.34) yields

¯

∫ b

a

f(x) dx ≤ U(f ;Q).

Taking the infimum over Q then yields (6.35).

Theorem 6.49 A bounded function f : [a, b]→ R is integrable if and only if

¯

∫ b

a

f =
¯∫ b

a

f. (6.36)

In the integrable case,

¯

∫ b

a

f =
¯∫ b

a

f =

∫ b

a

f. (6.37)

Proof: Let f ∈ B([a, b]).

First suppose that f is integrable. Then by Proposition 6.8, f is bounded, so our
analysis leading to (6.31)–(6.32) applies. These inequalities, together with (6.35), yield

lim
δ→0

Lδ(f) ≤
¯

∫ b

a

f ≤
¯∫ b

a

f ≤ lim
δ→0

Uδ(f). (6.38)

But from Theorem 6.30, since f is integrable, the leftmost and rightmost expressions in
(6.38) are equal to each other and to

∫ b
a
f . Hence∫ b

a

f = lim
δ→0

Lδ(f) =

¯

∫ b

a

f =
¯∫ b

a

f = lim
δ→0

Uδ(f).

This proves that the upper and lower integrals are equal, and establishes (6.37).
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Conversely, suppose that
∫̄ b
a
f =

∫̄ b
a
f, and let A denote the value of these quantities.

Let ε > 0 be given. Let P,Q be partitions of [a.b] such that L(f ;P ) > A − ε and
U(f ;Q) < A+ ε; such partitions exist by the definition of lower and upper integrals. Let
R be the common refinement of P and Q. Then, as in the proof of Lemma 6.48(ii), we
have L(f ;P ) ≤ L(f ;R) ≤ U(f ;R) ≤ U(f ;Q). Hence

A− ε < L(f ;R) ≤ U(f ;R) < A+ ε,

implying U(f ;R) − L(f ;R) < 2ε. Since ε was arbitrary, Proposition 6.43 then implies
that f is integrable.

Among the implications of Theorem 6.49 is that if f : [a, b] → R is integrable, then
the inequalities in (6.31) and (6.32) can be replaced by equalities. The student may
well wonder whether equality holds in (6.31) and (6.32) even without the assumption of
integrability. The answer is yes (this is one of several unrelated results each of which is
sometimes given the name “Darboux’s Theorem”), but the proof is not obvious, and we
do not give it in these notes. We refer the interested student to [10, Section 18.2,Theorem
VIII].

Remark 6.50 (Two approaches to the Riemann integral) Because Theorem 6.49
is true, equation (6.36) can be taken as the definition of “a bounded function f is (Rie-
mann) integrable on [a, b]”, in place of Definition 6.5, without changing either the set of
functions being called “integrable” or the values of their integrals. If we use (6.36) to
define what “integrable” means, then Theorem 6.49 yields the second sentence of Defini-
tion 6.5 as a theorem rather than a definition. Many (probably most) textbooks use this
alternate definition of integrability, often phrased without any mention of Riemann sums
(taking (6.22) to be the definition of L(f ;P ) and U(f ;P )). This approach has several
advantages—for example, the definition of integrability is much simpler (there is no ε or
δ; the width of a partition is never even mentioned), and many proofs can be done more
efficiently.

However, there are also disadvantages3 of using (6.36) instead of Definition 6.5 to
define integrability. The chief mathematical disadvantage of the approach based on (6.36)
is that the generalization to integrals of vector-valued functions is less natural (especially
for functions taking values in an infinite-dimensional vector space). The other potential
disadvantages are primarily pedagogical. One is that unless a proof of Theorem 6.49

3Most of the “disadvantages” referred to here are predagogical in nature, so should properly be called
“disadvantages in the opinion of the author of these notes”, but such a mouthful in every instance where
the word “disadvantages” has been used would have made this discussion hard to read. The judgment of
what is pedagogically better or worse is highly subjective. Every instructor is forced to make pedagogical
choices, some aspect of which would be deemed disadvantageous by instructors making different choices.
No criticism is intended of anyone whose pedagogical choices are different from those of the author of
these notes.
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is provided, the notion of “
∫ b
a
f(x) dx” in this approach does not clearly reduce to the

notion that students learn in Calculus 1 (and again in Calculus 3, generalized to definite
integrals of functions of two or three variables)—a notion that is completely correct, but
that is usually not given a precise statement in Calculus 1-2-3 because students are not
yet equipped to understand or appreciate the precise statement. Definition 6.5 is exactly
the Calculus 1-2-3 notion of integrability, just defined precisely. It is this notion, rather
than equation (6.36), on which all quantities defined through integrals in physics and other
sciences are based.4 Without Theorem 6.49, it is not clear that the “upper integral = lower
integral” definition of integrability leads to the same notions of integration, or values of
integrals, conceptualized in Calculus 1 (whether or not (6.22) is used to define upper and
lower sums). Thus, some mathematicians find presentations of the Riemann integral that
take (6.36) as definition, but do not include a proof of Theorem 6.49 (e.g. the presentation
in [7]), to be unsatisfying. But when presentations that take (6.36) as definition do include
a proof of Theorem 6.49 is included (as in [6, Theorem 6.14] and [10, Section 18.2]), some
of the efficiency initially gained from the upper-integral/lower-integral definition is lost.

When (6.22) is used to define upper and lower sums, in addition to using (6.36)
to define integrability, there is another efficiency-gain (the need to prove Proposition
6.34 is avoided), but offsetting are additional pedagogical disadvantages. One is that
all connection to Riemann sums has been removed (unless prominent mention is made
elsewhere in the presentation), putting even more distance between the integral defined
this way and the integral as conceptualized in Calculus 1-2-3 and in the sciences. Another
is that, using (6.22), we cannot even define upper and lower sums (and therefore upper
and lower integrals), even within the extended reals, without restricting attention to
functions that are at least semi-bounded: bounded above or bounded below. (In contrast,
upper and lower sums as defined in Definition 6.18 always exist in the extended reals; no
boundedness assumptions are needed.) Usually, to simplify presentations based on (6.22)
and (6.36), a restriction is made to functions that are bounded, not just semi-bounded.
Thus one loses Proposition 6.8. Instead of the non-integrability of unbounded functions
being a consequence of the concept of the Riemann integral, unbounded functions are
simply removed from consideration from the start (and students my reasonably wonder,
“Why?”). Thus one of the chief deficiencies of the Riemann integral (as compared with
the Lebesgue integral) cannot be demonstrated; it’s been defined away. N

6.5 The integrability of continuous functions

Theorem 6.51 (Continuous functions are integrable) If f : [a, b] → R is continu-
ous, then f is integrable on [a, b].

4It is exactly these quantities in physics, including vector-valued integrals, for which the notion of
“integral” was originally developed; calculus was invented in order to provide a mathematical description
of physical laws. Examples of quantities in physics that, to this day, are understood by starting with
Riemann sums, include work, centers of mass, moments of inertia, hydrostatic force, all line integrals in
electricity and magnetism (E&M), and all flux integrals in E&M and in fluid dynamics.
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Proof: Let f : [a, b]→ R be a continuous function. Since [a, b] is compact, f is bounded.
Therefore, by Proposition 6.43, to prove that f is integrable it suffices to show that for
each ε > 0, there exists a partition P of [a, b] such that U(f ;P )− L(f ;P ) < ε.

Let ε > 0 be given. Recall from MAA 4211 that every continuous function on a
compact space is uniformly continuous. Since [a, b] is compact and f is continuous, it
follows that f is uniformly continuous. Let δ > 0 be such that if x, y ∈ [a, b] and
|x− y| < δ, then |f(x)− f(y)| < ε/(b− a); such δ exists since f is uniformly continuous.
Let P = {x0, . . . , xN} ∈ Pδ([a, b]); such P exists by Remark 6.4.

Recall also from MAA 4211 that every continuous real-valued function on a compact
space attains a maximum value and a minimum value. In particular, this applies to
f |[xj−1,xj ] for each j ∈ {1, . . . , N}. For each such j let mj,Mj denote, respectively, the
minimum and maximum values of f |[xj−1,xj ], and let x′j, x

′′
j ∈ [xj−1, xj] be such that f(x′j) =

mj and f(x′′j ) = Mj. Then, for each j ∈ {1, . . . , N}, we have |x′j − x′′j | ≤ wid(P ) < δ, so

Mj −mj = f(x′′j )− f(x′j) <
ε

b− a
.

But by Proposition 6.34, L(f ;P ) =
∑

jmj∆j and U(f ;P ) =
∑

jMj∆j (where ∆j =
∆j(P )). Hence

U(f ;P )− L(f ;P ) =
∑
j

(Mj −mj)∆j <
∑
j

ε

b− a
∆j =

ε

b− a
∑
j

∆j = ε.

Since ε was arbitrary, we conclude from Proposition 6.43 that f is integrable.

6.6 Additivity of the integral

The Riemann integral has an additivity property (unrelated to linearity) expressed by the
following proposition.

Proposition 6.52 (Additivity of the integral) Suppose a < c < b. A function f :
[a, b] → R is integrable on [a, b] if and only if it is integrable on both [a, c] and [c, b]. In
the integrable case, ∫ b

a

f =

∫ c

a

f +

∫ b

c

f. (6.39)

Proof: Let f1 = f |[a,c] and f2 = f |[c,b].
First suppose that f1 and f2 are integrable, and let A and B, respectively, denote their

integrals. Since f1 and f2 are integrable, they are bounded; hence so is f . Let M > 0 be
such that |f(x)| ≤M for all x ∈ [a, b].
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Let ε > 0. Let δ > 0 be such Sδ(f1) ⊂ (A−ε, A+ε) and Sδ(f2) ⊂ (B−ε, B+ε); such δ
exists by the assumed integrability of f1 and f2. Let (P, T ) = ({x0, . . . , xN}, {t1, . . . , tN})
be a pointed partition of [a, b] of width less than δ. Define

j′ = max{j ∈ {1, . . . , N} : xj < c}, (6.40)

j′′ = min{j ∈ {1, . . . , N} : xj > c} (6.41)

(thus the value of j′′ − j′ is either 2 or 1, accordingly as c is or is not an element of P ).
Define partitions P ′, P ′′ of [a, c], [c, b], respectively, by

P ′ = (P ∩ [a, c]) ∪ {c} = {x0, . . . , xj′ , c}, (6.42)

P ′′ = {c} ∪ (P ∩ [c, b]) = {c, xj′′ , . . . , xN}; (6.43)

observe that wid(P ′) and wid(P ′′) are at most wid(P ), hence are less than δ. Define
pointings T ′, T ′′ of [a, c], [c, b], respectively, by

T ′ = {t1, . . . , tj′ , c},
T ′′ = {c, tj′′ , . . . , tN}.

For j ≤ j′ and for j > j′′, the jth term in the sum defining S(f ;P, T ) is a term in either
the sum defining S(f1;P

′, T ′) or the sum defining S(f2;P
′′, T ′′) (but not both). Similarly,

every term except possibly the last (respectively, first) in the sum defining S(f1;P
′, T ′)

(resp., S(f2;P
′′, T ′′)) is a term in the sum defining S(f ;P, T ). Hence

S(f ;P, T )− (S(f1;P
′, T ′) + S(f2;P

′′, T ′′))

=


f(tj′′)(xj′′ − xj′)− f(c)(c− xj′)− f(c)(xj′′ − c) if c /∈ P

(equivalently, if j′′ = j′ + 1),
(f(tj′+1)− f(c))(c− xj′) + (f(tj′′)− f(c))(xj′′ − c) if c ∈ P

(equivalently, if j′′ = j′ + 2).

The numbers (c − xj′), (xj′′−1 − c), (xj′′ − xj′), and (xj′′ − c) are positive wherever they
appear above, and all are at most δ. Since |f(x)| ≤M for every x ∈ [a, b], in all cases we
have

|S(f ;P, T )− (S(f1;P
′, T ′) + S(f2;P

′′, T ′′))| ≤ 4Mδ.

By the definition of δ, this implies that

(A− ε) + (B − ε)− 4Mδ < S(f1;P
′, T ′) + S(f2;P

′′, T ′′)− 4Mδ

≤ S(f ;P, T )

≤ S(f1;P
′, T ′) + S(f2;P

′′, T ′′) + 4Mδ

< (A+ ε) + (B + ε) + 4Mδ. (6.44)
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The preceding holds for all (P, T ) of width less than δ. Now let δ1 = min{δ, ε
4M
}; thus

4Mδ1 ≤ ε. Then (6.44) shows that for each pointed partition (P, T ) of [a, b] of width less
than δ1,

A+B − 3ε < S(f ;P, T ) < A+B + 3ε.

Since ε was arbitrary, this establishes that f is integrable and that
∫ b
a
f = A + B, as

desired.

Conversely, suppose that f is integrable on [a, b]. Then f is bounded. Let ε > 0. Let
P be a partition of [a, b] such that U(f ;P ) − L(f ;P ) < ε; such P exists by Proposition
6.43. Define partitions indices j′, j′′ and partitions P ′, P ′′ (of [a, c] and [c, b], respectively)
just as in (6.40)–(6.41) and (6.42)–(6.43). For each j ∈ {1, . . . , N}, define mj and Mj

as in Proposition 6.34. Let M ′ = sup(f([xj′ , c]) and m′ = inf(f([xj′ , c]); since [xj′ , c] ⊂
[xj′ , xj′+1] we have M ′ ≤Mj′+1 and m′ ≥ mj′+1. Then, applying Proposition 6.34,

U(f1;P
′)− L(f1;P

′) =

j′∑
j=1

(Mj −mj)∆j(P ) + (M ′ −m′)(c− xj′)

≤
j′∑
j=1

(Mj −mj)∆j(P ) + (Mj′+1 −mj′+1)(xj′+1 − xj′)

=

j′+1∑
j=1

(Mj −mj)∆j(P )

≤
N∑
j=1

(Mj −mj)∆j(P )

= U(f ;P )− L(f ;P )

< ε.

Similarly, U(f2;P
′′)− L(f2, P

′′) < ε. Since ε was arbitrary, Proposition 6.43 implies that
f1 and f2 are integrable.

Corollary 6.53 Let f : [a, b]→ R.

(a) The function f is integrable if and only if its restriction to each closed subinterval
of [a, b] is integrable.

(b) Suppose f is integrable, n ∈ N, and a < c1 < c2 · · · < cn < b. Then∫ b

a

f =

∫ c1

a

f +

∫ c2

c1

f + · · ·+
∫ b

cn

f.
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Exercise 6.7 Prove Corollary 6.53.

Definition 6.54 Let a, b ∈ R, with a ≤ b, and let f be a real-valued function on [a, b].

(i) We define
∫ a
a
f = 0, and say that this integral exists.

(ii) If b > a, we say that
∫ a
b
f exists if and only if

∫ b
a
f exists, in which case we define∫ a

b
f = −

∫ b
a
f .

N

Corollary 6.55 Let a, b ∈ R.

(i) Let c ∈ R. Then
∫ b
a
c = c(b− a).

(ii) Let a′ = min{a, b} and b′ = max{a, b}. Suppose that f is integrable on [a′, b′] and
that M is a number such that, for all x ∈ [a′, b′], we have |f(x)| ≤M . Then∣∣∣∣∫ b

a

f

∣∣∣∣ ≤M |b− a|. (6.45)

Proof: In view of Definition 6.54, it suffices to establish (i) and (ii) in the case a < b,
so let us assume a < b. Then (i) follows from Example 6.10. For (ii), note that every
Riemann sum of f over [a, b] lies in the interval [−M(b− a),M(b− a)]. The definition of∫ b
a
f then implies that

∫ b
a
f also lies in this interval. Therefore (6.45) holds.

Note that in Proposition 6.52, if both integrals on the right-hand side of (6.39) exist,
then so does the integral on the left-hand side, while if the integral on the left-hand side
exists, so do both of the integrals on the right-hand side. Hence if any two of the three
integrals written in (6.39) exist, so does the third, and we have equality in (6.39). Observe
also that (6.39) can be rewritten as∫ b

c

f =

∫ b

a

f −
∫ c

a

f,

which, using Definition 6.54, can be further rewritten as∫ b

c

f =

∫ a

c

f +

∫ b

a

f, (6.46)

which differs from (6.39) only by a permutation of the letters a, b, c. Furthermore,
∫ a
c
f

exists if and only if
∫ c
a
f exists, so two of the three integrals in (6.39) exist if and only if

two of the three integrals in (6.46) exist. However, if a < c < b, then in (6.46) we do not
have c < a < b; equation (6.46) holds even though the limits of integration do not have
the same order-relation as in Proposition 6.52. Pushing these ideas a little further leads
to the following:
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Corollary 6.56 Let a, b, c ∈ R and let f be a real-valued function defined on an interval
that includes a, b, and c. (No ordering of a, b, c is assumed.) Then if any two of the three

integrals
∫ c
a
f,
∫ b
a
f,
∫ c
b
f exists, so does the third, and∫ c

a

f =

∫ b

a

f +

∫ c

b

f ; (6.47)

equivalently, ∫ c

a

f −
∫ c

b

f =

∫ b

a

f. (6.48)

Exercise 6.8 Prove Corollary 6.56. (Do not forget to handle the cases in which two or
three of the numbers a, b, c are equal.)

6.7 The Fundamental Theorem of Calculus

There are essentially two different, but closely-related, theorems that go by the name “The
Fundamental Theorem of Calculus”5 (or, more historically, “The Fundamental Theorem
of Integral Calculus”; this longer name is more descriptive is rarely used anymore). One
of these involves the integral of a derivative, and the other the derivative of an integral.
More precisely, this is the primary distinction between the conclusions of these theorems.
For each of these types of conclusions, there are actually more than one theorem, differing
in their hypotheses. Of the various theorems that go by the name “The Fundamental
Theorem of Calculus”, we will prove the two that are of the greatest use in calculus, and
refer to each of these two as “part of the Fundamental Theorem of Calculus”.6 Later, in
optional reading for the student, we discuss some of the other, related, theorems called The
Fundamental Theorem of Calculus, and discuss the nomenclature for all these theorems.

The following simple lemma is needed for the statement of the first theorem we will
prove.

Lemma 6.57 Let U ⊂ R be an open interval, f : U → R a continuous function, and
a, b ∈ U . Then

∫ b
a
f exists.

5Since there is more than one theorem called “The Fundamental Theorem of Calculus”, it is tempting
to refer to these theorems collectively as “The Fundamental Theorems of Calculus”. We choose not do
so in these notes, however, since that terminology can give the impression that this group of theorems
contains all the theorems that are fundamental to calculus, when in fact “The Fundamental Theorem of
Calculus” is simply a historical name for one theorem and its relatives.

6 Needless to say, we could state a single theorem that has each of these two theorems as a part,
but the only motivation would be that the two theorems share a name. Combining them into a single
theorem, each part of which has its own hypotheses, would be rather artificial, and would be inconvenient
for the proofs.
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Proof: If a = b then, by definition, the integral exists and is 0. If a 6= b then the
restriction of f to [min{a, b},max{a, b}] is continuous, so by Theorem 6.51, the integral
of f over this interval exists. If a < b we are done; if a > b the result follows from
Definition 6.54.

This lemma assures us that the function F in the theorem below is indeed well-defined.

Theorem 6.58 (“part of” the Fundamental Theorem of Calculus) Let f be a con-
tinuous real-valued function on an open interval U ⊂ R, and let a ∈ U . Define F : U → R
by

F (x) =

∫ x

a

f(t) dt.

Then F is differentiable and F ′ = f .

Proof: Fix x0 ∈ U , and let x ∈ U . Corollary 6.55(i) implies that
∫ x
x0
f(x0) dt =

f(x0)(x− x0) (here we are integrating the constant function t 7→ f(x0)). Using Corollary
6.56 in the form (6.48), we also have F (x)− F (x0) =

∫ x
x0
f(t)dt. Hence

F (x)− F (x0)− f(x0)(x− x0) =

∫ x

x0

f(t) dt−
∫ x

x0

f(x0) dt =

∫ x

x0

(f(t)− f(x0)) dt.

Therefore for all x ∈ U with x 6= x0, we have

∣∣∣∣F (x)− F (x0)

x− x0
− f(x0)

∣∣∣∣ =

∣∣∣∣F (x)− F (x0)− f(x0)(x− x0)
x− x0

∣∣∣∣ =

∣∣∣∫ xx0 (f(t)− f(x0)) dt
∣∣∣

|x− x0|
.

(6.49)

Now let ε > 0 be given, and let δ > 0 be such that for all x ∈ U with |x − x0| < δ
we have |f(x) − f(x0)| < ε; such δ exists since f is continuous at x0. Then for all
x ∈ Bδ(x0) \ {x0}, (6.49) and Corollary 6.55(ii) imply that∣∣∣∣F (x)− F (x0)

x− x0
− f(x0)

∣∣∣∣ ≤ ε|x− x0|
|x− x0|

= ε.

Hence limx→x0

(
F (x)−F (x0)

x−x0 − f(x0)
)

= 0. Since limx→x0 f(x0) = f(x0), it follows that

lim
x→x0

F (x)− F (x0)

x− x0
= lim

x→x0

[(
F (x)− F (x0)

x− x0
− f(x0)

)
+ f(x0)

]
= lim

x→x0

(
F (x)− F (x0)

x− x0
− f(x0)

)
+ lim

x→x0
f(x0)

= 0 + f(x0) = f(x0).
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Thus F is differentiable at x0, and F ′(x0) = f(x0). Since x0 was arbitrary, we are
done.

An antiderivative of a function f on an open set U is a differentiable function F such
that F ′ = f . An immediate corollary of Theorem 6.58 is:

Corollary 6.59 Every continuous function f on an open interval has an antiderivative
on that interval.

Proof: Fix any a ∈ U . Then the function x 7→
∫ x
a
f(t) dt is an antiderivative of f on U .

Theorem 6.60 (The Fundamental Theorem of Calculus) Let U ⊂ R be an open
interval, let f : U → R be a continuous function, and let F be an antiderivative of f on
U . Then for all a, b ∈ U , ∫ b

a

f(t)dt = F (b)− F (a). (6.50)

Observe that Theorem 6.60 can be stated equivalently as follows:

Theorem 6.61 (The Fundamental Theorem of Calculus) Let U ⊂ R be an open
interval, and let F : U → R be a differentiable function whose derivative F ′ is continuous.
Then for all a, b ∈ U , ∫ b

a

F ′(t) dt = F (b)− F (a). (6.51)

Proof of Theorem 6.60: Fix a ∈ U , and define G : U → R by G(x) =
∫ x
a
f(t) dt. By

Theorem 6.58, G′ = f . But by hypothesis, F ′ = f . Recall the following consequence
of the Mean Value Theorem: If two differentiable functions H1, H2 on an open interval
have identical derivatives, then H2 − H1 is constant (on that interval). Hence G − F is
constant. Therefore for all x ∈ U ,

G(x)− F (x) = G(a)− F (a) = 0− F (a) = −F (a),

so G(x) = F (x)− F (a). Thus for any b ∈ U ,
∫ b
a
f(t) dt = G(b) = F (b)− F (a).

Remark 6.62 The careful reader will have noticed that Theorem 6.58 is not, in fact,
part of Theorem 6.60. For an explanation of the this apparently illogical terminology, see
Remark 6.68 (optional reading).
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Remark 6.63 Theorem 6.60 (and even a stronger version) can be proven without the
use of Theorem 6.58; the earlier theorem simply affords us a proof of Theorem 6.60 than
is shorter than other proofs. See Theorem 6.66 and Exercise 6.10 later. N

Exercise 6.9 Evaluate limn→∞
1
n

[(
1
n

)6
+
(
2
n

)6
+
(
3
n

)6
+ · · ·+

(
n
n

)6]
.

Problems like the exercise above were common in high-school math-team competitions
when the writer of these notes was in high school. Usually, students were given 2 minutes
or so to solve such a problem. The trick is to recognize the sequence whose limit is being
taken as a sequence of Riemann sums for an appropriate function over an appropriate
interval, then use Exercise 6.1 and the Fundamental Theorem of Calculus.

Remark 6.64 “True” integration refers to what we call the “definite integral” in Cal-
culus 1; it’s about adding stuff up. This is true whether we are talking about the Rie-
mann integral, a generalization called the Riemann-Stieltjes integral, improper integrals,
or the Lebesgue integral. Nothing in the concept of integration involves differentiation.
Archimedes already had this concept of integration as “adding up stuff” nearly two mil-
lennia before derivatives and integrals were defined, when he realized that the area inside
a circle could be computed as the limit as n→∞ of the area of an inscribed regular n-gon.
The Fundamental Theorem of Calculus (FTC) relates two completely distinct concepts:
integration and antidifferentiation. Because we are able to compute antiderivatives of so
many familiar functions, the FTC is a key tool in the computation of (definite) integrals.

It is because of the Fundamental Theorem of Calculus that antiderivatives are also
called by a name, “indefinite integrals”, that involves the word “integral”. If you learned
indefinite integration before definite integration, you may have received the false impres-
sion that “integration” always means “antidifferentiation”. In this case, when learning
about the Riemann-sum definition of the integral (either in Calculus 1 or in Advanced
Calculus), you may have wondered, “What does this have to do with integration?” But
you should now realize that this is the wrong question. Once you understand what inte-
gration actually means, but before you learn the FTC, the right question is “What does
antidifferentiation have to do with integration?” This question is answered by the FTC.
The FTC is the reason that antiderivatives are also called (indefinite) integrals.

If you learned indefinite integration before definite integration, another question you
may have asked yourself is, “Where does this symbol ‘

∫
’ ” come from?” It comes from

definite integration. The history of the symbol is that “
∫

” is an elongated S, the “S”
standing for “sum”. The reason that the same symbol is used for antiderivatives is, again,
the FTC. N

Remark 6.65 Observe that the last statement of Theorem 6.58 can be written as

d

dx

∫ x

a

f(t) dt = f(x), (6.52)
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a statement about “the derivative of an integral” (more precisely, the derivative of a
function defined by an integral in the specific way above), whereas (6.51) is a state-
ment about the integral of a derivative. Although (6.51) and (6.52) look different, they
are actually equivalent once we know Corollary 6.59. By simply changing notation, we
can rewrite (6.51) as

∫ x
a
F ′(t) dt = F (x) − F (a). Since F in this equation is assumed

differentiable, and F (a) is just a constant, the right-hand side of this equation is dif-
ferentiable in x; hence so is the left-hand side. Thus, given (6.51), we deduce that
d
dx

∫ x
a
F ′(t) dt = d

dx
(F (x) − F (a)) = F ′(x). Since (from Corollary 6.59) every continu-

ous real-valued function on an open interval has an antiderivative, there is no loss of
generality if we replace F ′ (which was assumed continuous when we wrote (6.51)) in this
last equation by an arbitrary continuous function f . But this yields (6.52).

Conversely, our proof of Theorem 6.60 shows that (6.52) implies (6.50), hence also im-
plies (6.51). This equivalence is the reason that both Theorem 6.60 and Theorem 6.58 are
often referred to by the same name, “The Fundamental Theorem of Calculus.” However,
as written, Theorem 6.58 is a stronger theorem than Theorem 6.60, since it implies that
every continuous real-valued function on an open interval has an antiderivative, which
cannot be deduced from Theorem 6.60. N

The remainder of this section is optional reading. (However, if you’re wondering
why Theorems 6.58 and Theorem 6.60 were given their names in these notes, the answer
is contained in Remark 6.68.)

In Theorem 6.61, we assumed that the integrand F ′ was continuous. This hypothesis
can be weakened to the assumption that F ′ is merely integrable over the appropriate
interval, thereby obtaining the following stronger theorem (which can also reasonably be
called “the Fundamental Theorem of Calculus”):

Theorem 6.66 Let U ⊂ R be an open interval, let a, b ∈ U , and let F : U → R be a
differentiable function whose derivative F ′ is integrable over the interval with endpoints a
and b. Then equation (6.51) holds.

Exercise 6.10 (Optional.) Prove Theorem 6.66. Hint: It suffices to prove the result in
the case a < b (why?). Assume a < b. For any partition P = {x0, . . . , xN} of [a, b], observe
that F (b)−F (a) =

∑N
j=1(F (xj)−F (xj−1)). Apply the Mean Value Theorem to F on each

interval [xj−1, xj], deduce that (for any partition P ), L(f ;P ) ≤ F (b) − F (a) ≤ U(f ;P ).
Now apply an appropriate result that we proved earlier.

Theorem 6.58 can also be strengthened:

Theorem 6.67 If f ∈ R([b, c]), and a ∈ [b, c], then the function F : [b, c] → R defined
by

F (x) =

∫ x

a

f(t) dt
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is continuous. If, in addition, f is continuous at x0 ∈ (b, c), then F is differentiable at
x0, and F ′(x0) = f(x0).

Observe that the proof we gave of Theorem 6.58 actually proves the second assertion
in Theorem 6.67; we simply replace the arbitrary point x0 in that proof by the specific
point x0 in the statement of Theorem 6.67. What is new in Theorem 6.67 is really the
first assertion: that if we assume only that f is integrable (rather than continuous) on a
closed, bounded interval containing a, we can still deduce something about the function
F , namely that it is continuous.

Exercise 6.11 (Optional.) Prove the first assertion in Theorem 6.67.

Most textbooks on introductory or advanced calculus state only Theorems 6.60 and
6.58; usually Theorems 6.66 and 6.67 are stated only in more advanced textbooks on
analysis.

Remark 6.68 (Naming the theorems in this section) For purposes of this Remark,
minor differences in the statements of the theorems under discussion are ignored.

If you ask different mathematicians (or even the same mathematician at different
times), “What is the Fundamental Theorem of Calculus?” you will get different answers.
The answer may also depend on the level of who’s asking the question. In some textbooks,
Theorem 6.60 is called the Fundamental Theorem of Calculus (FTC) or the Fundamental
Theorem of Integral Calculus (FTIC), and Theorem 6.58 is stated but not given a name
(e.g. [8, 11]). In other textbooks, exactly the opposite is true: Theorem 6.58 is called the
FTC, and Theorem 6.60 is stated but not given a name (e.g. [5]).

This is not where the name-discrepancies end. The first edition of Apostol’s analysis
textbook [2] calls Theorem 6.60 the FTIC, and states and proves a generalized version7

of Theorem 6.67, but does not give a name to the latter theorem. The second edition
of Apostol’s analysis textbook, [3], calls Theorem 6.60 the Second FTIC. In this edition,
Apostol stil does not give his version of Theorem 6.67 a name, but says afterwards that
part (iii) of this theorem—the only part that gives a relation between integration and
differentiation—is “sometimes called the first FTIC” in the special case of the pure Rie-
mann integral. Apostol’s calculus textbook [1] calls Theorem 6.58 the First FTC, and
Theorem 6.60 the Second FTC. Some textbooks implicitly (but never explicitly) combine
Theorems 6.58 and 6.60 into one theorem8, by calling Theorem 6.58 the “FTC, part 1”,
and call Theorem 6.60 the “FTC, part 2” (e.g. [4, 9]). Some textbooks call Theorem

7In [2] and [3], Apostol works with a generalized version of the Riemann integral called the Riemann-
Stieltjes integral. In some cases, but not all, he specifically states what various theorems reduce to for
the Riemann integral. A similar comment applies to Rudin [6, 7].

8Presumably, authors’ reasons for never doing this explicitly are similar to those mentioned in footnote
6.
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6.58 the “FTC–Second Form” and Theorem 6.60 the “FTC–First Form”. (Thus, among
authors calling Theorems 6.58 and 6.60 parts or forms of the same theorem, there is
inconsistency about which part/form is the first, and which is the second.) In [10], no
theorem is given a name that includes “FTC”; Theorems 6.60 and 6.58 are stated but
not given names. Rudin [6,7] states only the stronger versions of Theorems 6.60 and 6.58
(Theorems 6.66 and 6.67), calls Theorem 6.66 the FTC, and does not give a name to
Theorem 6.67.

What all the theorems whose textbook names include “FTC” (when the theorems
are named at all) have in common is that they are theorems about, and only about,
an “inverse” relationship of differentiation and integration (their conclusions are purely
about the derivative of an integral or the integral of a derivative). Sometimes you may see
“FTC” included in the name of Theorem 6.67, but this is less conventional than leaving
the theorem un-named, because the first assertion of Theorem 6.67 has nothing to do with
a relation between integration and differentiation. (Apostol’s treatment in [3], in which
he says only that part of his un-named version of Theorem 6.67 is called the First FTIC,
is more conventional.)

The upshot is that students should take none of these name-variants as gospel. It is
okay to call any of Theorems 6.58, 6.60, 6.66, and 6.67 the FTC, or part of the FTC, or
a form or version of the FTC.

The writer of these notes generally regards Theorem 6.61 (equivalently, Theorem 6.60)
as the “true” FTC, but when there is a need to refer to the (extremely important) Theorem
6.58, he uses language that implicitly combines Theorem 6.58 and Theorem 6.60 into
one grand FTC; hence the name given here to Theorem 6.58. (This is similar to the
approach that calls Theorems 6.60 and 6.58 “parts 1 and 2”—in whatever order—of the
FTC.) Theorem 6.61 has a place in mathematics that is rather more special than that of
Theorem 6.58, in several respects:

• Theorem 6.61 is the first of several important theorems, covered in a traditional
Calculus 3 course, that have a certain formal similarity that is actually very deep.
Other theorems in this collection are the “Fundamental Theorem of Line Integrals”,
Green’s Theorem, Stokes’s Theorem, and the Divergence Theorem. Each of these
theorems pertains to integrating a suitably defined derivative “dω” of a suitably
defined object ω over a “nice” n-dimensional set S with (n−1)-dimensional boundary
∂S (n = 1, 2, or 3), and makes a statement of the form

n-dimensional integral of dω over S = (n− 1)-dimensional integral of ω over ∂S.

(For these purposes, the 0-dimensional integral of a function F : [a, b] → R is
simply F (b) − F (a).) This collection of theorems generalizes to a single theorem,
also called Stokes’s Theorem, that holds for all n ≥ 1 (not just n = 1, 2, 3). The
FTC (in the form 6.61) is simultaneously a special case of this generalized version of
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Stokes’s Theorem, and a key step in its proof. This more general Stokes’s Theorem
is extremely important on its own, but is also the inspiration for a large subject in
algebraic topology called “homology and cohomology theory”.

• As discussed in Remark 6.64, Theorem 6.60 (equivalent to Theorem 6.61) is the
reason that we use the symbol “

∫
” for antiderivatives.

N

6.8 Change of variable

Definition 6.69 Let U ⊂ R be open.

(a) A function g : U → R is continuously differentiable if g is differentiable and g′ is
continuous.

(b) Let V ⊂ R, let g : U → V be a function, and let g̃ : U → R be the function defined
from g by simply changing the codomain to R. (Equivalently, g̃ = ι ◦ g, where ι : V → R
is the inclusion map; i.e. ι(x) = x for all x ∈ V .) We say that g is (continuously)
differentiable if g̃ is (continuously) differentiable. N

Proposition 6.70 (Change-of-variable in one-dimensional integrals) Let U, I ⊂
R be open intervals, f : U → R a continuous function, ϕ : I → U a continuously
differentiable function. Then for any a, b ∈ I,∫ ϕ(b)

ϕ(a)

f =

∫ b

a

(f ◦ ϕ)ϕ′ ; (6.53)

equivalently, in “dummy-variable notation”,∫ ϕ(b)

ϕ(a)

f(u) du =

∫ b

a

f(ϕ(x))ϕ′(x) dx. (6.54)

Proof: Fix a ∈ U . Define F : U → R by F (y) =
∫ y
ϕ(a)

f. Then, by Theorem 6.58, F is

differentiable and F ′ = f . Define G : I → R by G = F ◦ ϕ. Then G is the composition
of differentiable functions, so G is differentiable and G′ = (F ′ ◦ ϕ)ϕ′ = (f ◦ ϕ)ϕ′. The
function (f ◦ ϕ)ϕ′ is continuous (why?), so by Theorem 6.58, the function H : I → R
defined by H(x) =

∫ x
a

(f ◦ ϕ)ϕ′ is differentiable, and H ′ = (f ◦ ϕ)ϕ′ = G′. Since I is
an interval, “H ′ = G′” implies that G − H is constant (see the proof of Theorem 6.60).
Hence for all x ∈ I,

G(x)−H(x) = G(a)−H(a) = F (ϕ(a))−H(a) =

∫ ϕ(a)

ϕ(a)

f −
∫ a

a

(f ◦ ϕ)ϕ′ = 0− 0 = 0.
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Hence G(x) = H(x) for all x ∈ I. In particular, G(b) = H(b), which is exactly
equation (6.53).

Remark 6.71 Writing the result of Proposition 6.70 in the form (6.54) explains the
terminology “change of variable”; we think of the dummy variables in (6.54) as being
related by the equation u = ϕ(x). However, observe that in this proposition, ϕ need not
be one-to-one. This is a remarkable feature of the “one-dimensional” change-of-variables
formula that is not shared by the change-of-variables formula for multiple integrals (the
last topic we will study in this course, if we complete the syllabus).

Remark 6.72 (Helpfulness of Leibniz notation when changing variables) In the
Leibniz notation for the derivative of a function f , names are chosen for the independent
and dependent variables—say x and y, respectively, related by the equation y = f(x);
sometimes we simply write “y = y(x).” With this choice of variables, the Leibniz nota-
tion for f ′(x) is dy

dx
(in which we must remember that the right-hand side is not actually

a fraction with real numbers in numerator and denominator). In some situations, this
notation can lead to problems; in others, it is extremely helpful. The change-of-variables
formula(s) in Proposition 6.70 is an instance in which the Leibniz notation is a truly
marvelous mnemonic device. In place of introducing a name ϕ for the functional relation
between u and x that we’re thinking of when we write the formula (6.54), we simply
write “u(x)” in place of ϕ(x) on the right-hand side, and write du

dx
in place of ϕ′(x). In

the limits of integration on the left-hand side, instead of writing “ϕ(a)” and “ϕ(b)”, we
could write u(a) and u(b), but—since we are thinking of this as a change of variables—we
often write “u = u(a)” and “u = u(b)” instead. For the sake of symmetry, we often use
similar notation for the limits of integration on the right-hand side. Equation (6.54) then
becomes ∫ u=u(b)

u=u(a)

f(u) du =

∫ x=b

x=a

f(u(x))
du

dx
dx,

or, even more familiarly, ∫ x=b

x=a

f(u(x))
du

dx
dx =

∫ u=u(b)

u=u(a)

f(u) du. (6.55)

In other words, if we simply pretend that du
dx

in (6.55) is a true fraction, whose denominator
can be cancelled by the “dx” appearing to its right, then it appears “obvious” that the left-
hand side of (6.55) equals the right-hand side. While this logic for equating the left-hand
side with the right-hand side is completely bogus, it does allow us to remember (6.53)
and (6.54)—which we have rigorously proven—more easily. This is a tremendous benefit,
and both student and seasoned mathematician alike have no reason to be embarrassed by
relying on the above “abuse of notation” (pretending that du

dx
is a fraction, etc.) to help

remember (6.53) and (6.54). Just keep in mind that a valid proof is needed to deduce that
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(6.55) is correct; “proof by abuse of notation” (or “proof by misunderstanding notation”)
is not a valid method of proof. N

Remark 6.73 As the student will recall from Calculus 1, Proposition 6.70 (especially
when the conclusion is written as (6.55)) is a useful tool for the evaluation of integrals.
Reasonable names for this tool are “integration by substitution” and “changing variables
in the integral”.9 Calculus 1-2-3 tomes currently on the market usually call this technique
and its analog for indefinite integrals by the abysmal name “u-substitution”. You will
not find this terminology in older, “classic” textbooks such as [1–3,8,11], or in Rosenlicht
[5]. In older books, the technique is named according to the concept of substitution,
rather than a letter that is commonly used in substitutions. Calling this technique “u-
substitution” is like calling every function f : (subset of R)→ R an “x-function”. N

6.9 Integration of vector-valued functions

This section is an expanded version of Rosenlicht’s homework problem VI.6, a problem
that illustrates the generality and several strengths of the Riemann-sum approach to the
Riemann integral.

Throughout this section, (V, ‖ ‖) denotes a complete normed vector space10, with the
associated metric d. Usually we will write simply V rather than (V, ‖ ‖), with under-
standing that V has been given a fixed norm ‖ ‖ (such that the metric space (V, d) is
complete). We will write 0V for the zero element of V. For c ∈ R and v ∈ V , we define
“vc” to mean cv. Open balls in V will generally be denoted by notation of the form
“Bε(v)”, but in situations in which both balls in V and balls in R enter the discussion,
we put an appropriate superscript V or R on the “B”.

We will extend the theory of the Riemann integral from something that applies only
to real-valued functions to something that applies to vector-valued functions, by which
we mean functions from an interval [a, b] to a (complete, normed) vector space V . We do
not assume that V is finite-dimensional, except where noted. However, the student may
find it helpful to think of the case V = Rn (with, say, the Euclidean norm) when trying
to grasp what various definitions, propositions, etc., are saying.

Definition 6.74 (Riemann sums) Let f : [a, b] → V be a function and let (P, T ) =
(P, {t1, . . . tN}) be a pointed partition of [a, b]. The Riemann sum for f corresponding to

9However, once we learn about changing variables in multiple integrals—a topic at the end of this
course, if we complete the syllabus—we will see that “changing variables” is not a great description of
(6.54) unless ϕ restricts to a bijection from the interval with endpoints a, b to the interval with endpoints
ϕ(a), ϕ(b).

10A complete normed vector space is called a Banach space, but to help the student keep in mind the
important features we are assuming of our (V, ‖ ‖), we will stick to the self-descriptive term “complete
normed vector space”.
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(P, T ) is

S(f ;P, T ) =
N∑
j=1

f(tj)∆j . (6.56)

As we did for real-valued functions, we will write

S(f ;P ) = {S(f ;P, T ) : T is a pointing of P},

and for each δ > 0, write

Sδ(f) =
⋃
{S(f ;Q) : Q ∈ Pδ([a, b])}.

N

Note that there is no difference between the definitions (6.2) and (6.56) of Riemann
sums, except that in (6.56) the function f is taking its values in V rather than R. The
same definition would work with V replace by any vector space (whether or not normed
or complete); all that is needed for the definition (6.56) is the vector-space structure on
V . For the next definition, we need only a little more: the metric structure on V given by
a norm. This definition could be written exactly as Definition 6.5, simply replacing the
absolute-value symbols by norm-symbols, but we will make use of our notation “Sδ(f)” to
state the definition more efficiently (as we did for real-valued functions in Remark 6.24).

Definition 6.75 (Integrability) A function f : [a, b] → V is (Riemann) integrable if
there is a vector A ∈ V such that for each ε > 0 there exists δ > 0 such that Sδ(f) ⊂ Bε(A).
More generally, if f is a V -valued function whose domain includes [a, b], we say that f is
integrable on [a, b] (or over [a, b]) if f |[a,b] is integrable. N

We continue our convention (for these notes) that “integrable” means “Riemann inte-
grable” and that all integrals we discuss are Riemann integrals.

If there exist distinct A,A′ ∈ V both satisfying the condition satisfied by A in Def-
inition 6.75, then for ε = ‖A − A′‖/2 and S ∈ V we cannot have both ‖S − A‖ < ε
and ‖S − A′‖ < ε (the triangle inequality would lead to a contradiction). Therefore if,
just as for real-valued functions, if f is integrable on [a, b] then there is a unique A ∈ V
satisfying the condition in Definition 6.75. Thus we can define the integral of f exactly
as in Definition 6.7, just with R replaced by V :

Definition 6.76 Let f : [a, b] → V be integrable. We define the integral of f to be the

unique A ∈ V satisfying the condition given in Definition 6.5, and denote this A as
∫ b
a
f

or as
∫ b
a
f(x)dx, etc. for any dummy variable. More generally, if f is a V -valued function

on a domain that includes [a, b], and f is integrable on [a, b], we use the notation
∫ b
a
f

(or
∫ b
a
f(x)dx, etc.) for the integral of f |[a,b], and refer to the value of this integral as the

integral of f over [a, b]. We define the phrase “
∫ b
a
f exists” (or “

∫ b
a
f(x) dx exists”, etc. )

to mean that f is integrable on [a, b]. N
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Notation 6.77 We let Func([a, b], V ) denote the set of all functions [a, b] → V , and let
R([a, b], V ) ⊂ Func([a, b], V ) denote the set of integrable functions from [a, b] to V .

The set Func([a, b], V ) is itself a vector space, with zero element the constant function
x 7→ 0V , and with the vector-space operations defined through pointwise operations: for
f, g ∈ Func([a, b], V ) and any c ∈ R, we define elements f + g and cf of Func([a, b], V ) by
(f + g)(x) := f(x) + g(x) and (cf)(x) := cf(x) for all x ∈ [a, b].

Remark 6.78 If dim(V ) = 0, then V = {0V } and Func([a, b], V ) contains only the
constant function x 7→ 0V . All Riemann sums of this function have the value 0V . Hence
this function is integrable, and the value of the integral is 0V .

Thus, in a discussion of integrating vector-valued functions, the 0-dimensional vector
space is not interesting. We have not excluded it from our discussion, though, since a
restriction of the form “Assume dim(V ) ≥ 1” might give the impression that something
goes wrong if dim(V ) = 0, rather than that this case is simply uninteresting. N

Exercise 6.12 Recall that two norms ‖ ‖1, ‖ ‖2 on V are called equivalent if there exist
real numbers c1, c2 > 0 such that for all v ∈ V we have ‖v‖2 ≤ c1‖v‖1 and ‖v‖1 ≤ c2‖v‖2.
Show that if the given norm ‖ ‖ on V is replaced by any equivalent norm, neither the set
R([a, b], V ) nor the values of any integrals changes.

Exercise 6.13 Show that the statements in Exercise 6.1 for functions f : [a, b]→ R also
hold for functions f : [a, b]→ V .

Exercise 6.14 Establish the analog of Example 6.10 for V -valued functions: For any
v ∈ V , the constant function f : [a, b]→ V given by f(x) = v is integrable, and∫ b

a

v dx = (b− a)v.

Proposition 6.79 (linearity of the integral) The set R([a, b], V ) is a vector space (a

vector subspace of Func([a, b], V )), and the map R([a, b], V ) → V defined by f 7→
∫ b
a
f is

linear.

Exercise 6.15 Prove Proposition 6.79.

Since a general vector space is not an ordered set (statements such as “v < w” for
v, w ∈ V are meaningless unless V = R or V = {0V }), there are no analogs of Proposition
6.15 or Corollary 6.16 for V -valued functions (for general V ). For the same reason, there
are no analogs of upper and lower sums. However, we used upper and lower sums only
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as a tool to simplify proofs and to aid in visualization of certain facts. Most facts about
integrable real-valued functions that do not explicitly (i.e. in their statements, not just
their proofs) rely on the fact that R is ordered, do generalize to V -valued functions.
For some of these facts, we will have to use a different proof-strategy, since we often
used the fact that R is ordered as a crutch to simplify proofs (and often to gain useful
insight!). The proofs of results such as “integrable implies bounded” and “continuous
implies integrable”, given in this section for V -valued functions, would have worked just
as well earlier for R-valued functions.

Proposition 6.80 (“Integrable implies bounded”) If f : [a, b] → V is integrable,
then f is bounded.

Proof: Let f ∈ R([a, b], V ), and let A =
∫ b
a
f . Let δ > 0 be such that Sδ(f) ⊂ B1(A).

Fix a partition P = {x0, . . . xN} of [a, b] of width less than δ.

Assume that f is unbounded. Then f is unbounded on at least one of the intervals
Ij := [xj−1, xj], since there are only finitely many such intervals. Let j0 ∈ {1, . . . , N} be
such that f is unbounded on Ij0 . For each n ∈ N, choose zn ∈ Ij0 such that ‖f(zn)‖ > n;
such zn exist by the unboundedness assumption. For each j ∈ {1, . . . , N} with j 6= j0,

fix any number tj ∈ [xj−1, xj], let T (n) be the pointing {t(n)1 , . . . , t
(n)
N } of P for which

t
(n)
j =

{
tj if j 6= j0,
zn if j = j0 ,

and let A′ =
∑

j 6=j0 f(tj)∆j. Then, using the triangle inequality,

‖S(f ;P, T (n))− A‖ = ‖f(zn)∆j0 + A′ − A‖ ≥ ‖f(zn)∆j0‖ − ‖A− A′‖
= ‖f(zn)‖∆j0 − ‖A− A′‖
> n∆j0 − ‖A− A′‖.

For n sufficiently large, n∆j0 − ‖A − A′‖ > 1, implying that S(f ;P, T (n)) /∈ B1(A), a
contradiction.

Hence f is bounded.

To get rid of our reliance on upper and lower sums in various proofs, we need to es-
tablish Theorem 6.30’s “(i) ⇐⇒ (iv)” implication in a way that does not use the order
structure of R (in particular, a way that does involve statement (ii) or (iii) of that theo-
rem). We do this by copying Rosenlicht’s Lemma 1 in [5, Section VI.3], simply replacing
“real-valued” replaced by “V -valued”, and absolute values by norms:

Proposition 6.81 Let f ∈ Func([a, b], V ). Then f is integrable if and only if, for each
ε > 0, there exists δ > 0 such that for all S1, S2 ∈ Sδ(f), we have ‖S1 − S2‖ < ε.
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Proof: First assume that f is integrable, and let A =
∫ b
a
f. Let δ > 0 be such that

Sδ(f) ⊂ Bε/2(A). Then for all S1, S2 ∈ Sδ(f) we have

‖S1 − S2‖ = d(S1, S2) ≤ d(S1, A) + d(A, S2) <
ε

2
+
ε

2
= ε.

This proves the “only if” assertion of the proposition.

Conversely, assume that for each ε > 0, there exists δ > 0 such that for all S1, S2 ∈
Sδ(f), we have ‖S1 − S2‖ < ε. Let (Pn)∞n=1 be a sequence of partitions of [a, b], and
(S(n))∞n=1 a sequence of Riemann sums of f , such that for all n we have wid(Pn) < 1

n

and S(n) ∈ S(f ;Pn). Let ε > 0, and let δ be such that for all S1, S2 ∈ Sδ(f), we have
‖S1 − S2‖ < ε. Let N ∈ N be any integer greater than 1

δ
. Then for all n,m ≥ N the

partitions Pn, Pm both have widths less than δ, so ‖S(n) − S(m)‖ < ε. Therefore the
sequence (S(n)) in (V, d) is Cauchy. Since (V, d) is complete, this sequence converges; let
A denote its limit.

Again let ε > 0 be arbitrary, and now let δ > 0 be such that for all S1, S2 ∈ Sδ(f), we
have ‖S1 − S2‖ < ε

2
. Let N ∈ N be such that N > 1

δ
and ‖S(N) − A‖ < ε

2
; such N exists

since (S(n)) converges to A. For every S ∈ Sδ(f) we then have

d(S,A) ≤ d(S, S(N)) + d(S(N), A) <
ε

2
+
ε

2
= ε.

Hence f is integrable.

Exercise 6.16 Prove that the analog of Proposition 6.52, “Additivity of the integral”,
holds for V -valued functions. The first half of the proof of Proposition 6.52 can be
mimicked fairly easily. For the second half, which made use of upper and lower sums,
you will need to figure out how to use Proposition 6.81 in place of Proposition 6.43, the
“Step-function lemma”.

Notation 6.82 Let V ∗ denote the set of continuous linear transformations from V → R.
(V ∗ is called the dual space or continuous dual of V .)

The handout “Some notes on normed vector spaces”
(http://dgarchive.com/classes/4212 s17/misc handouts/normed vector spaces.pdf) proves,
among other things, several facts we will need concerning linear transformations from V
to R. We collect these here into a proposition so that we may refer to them easily:

Proposition 6.83

(a) A linear transformation ξ : V → R is continuous if and only if there exists a real
number K such that

|ξ(v)| ≤ K‖v‖ for all v ∈ V. (6.57)
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(b) If V is finite-dimensional, then every linear transformation from V to R is contin-
uous.

(c) If V is finite-dimensional, then any two norms on V are equivalent.

We mention a few things in passing:

• The “normed vector spaces” handout actually proves (a) and (b) for linear trans-
formations from V to any normed vector space, not just R.

• Facts (b) and (c) are false if is V infinite-dimensional.

• For the first fact, all that we will need is the “only if” part.

One additional fact that we will use, not mentioned in the “normed vector spaces”
handout, is that a finite-dimensional vector space, endowed with any norm, is complete.
This follows from facts proven (hopefully) in MAA 4211: (i) If d1, d2 are equivalent metrics
on a set E (“equivalence” being defined the same way as for norms on vector spaces),
then (E, d1) is complete if and only if (E, d2) is complete. (ii) If two norms on a vector
space are equivalent, so are their associated metrics. (iii) If V has finite dimension n ≥ 1,
and ‖ ‖ is the `∞ (or the `2) norm determined by some choice of basis, then V is complete
with respect to the associated metric.

Thus, every finite-dimensional normed vector space is a complete normed vector space.

Returning to general V (not necessarily finite-dimensional): given any f ∈ Func([a, b], V )
and any ξ ∈ V ∗, the composition ξ ◦ f is a real-valued function on [a, b]. The next propo-
sition relates the integrability, and the integrals, of the V -valued function f and the
real-valued function ξ ◦ f . Before we state the proposition, the student should do the
following easy exercise.

Exercise 6.17 Show that for any f ∈ Func([a, b], V ) and ξ ∈ V ∗, and any pointed
partition (P, T ) of [a, b],

ξ (S(f ;P, T )) = S(ξ ◦ f ;P, T ). (6.58)

Proposition 6.84 If f ∈ R([a, b], V ), then for every ξ ∈ V ∗ we have ξ ◦ f ∈ R([a, b]),
and

ξ

(∫ b

a

f

)
=

∫ b

a

ξ ◦ f. (6.59)

Proof: Let f ∈ R([a, b], V ), let ξ ∈ V ∗, and let A =
∫ b
a
f . Let K > 0 be such that (6.57)

is satisfied. Let ε > 0 be given, let ε1 = ε
K

, and let δ > 0 be such that Sδ(f) ⊂ BV
ε1

(A).
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Now let (P, T ) be a pointed partition of [a, b] of width less than δ. Then S(f ;P, T ) ∈
BV
ε1

(A), and, using equation (6.58),

|S(ξ ◦ f ;P, T )− ξ(A)| = |ξ (S(f ;P, T ))− ξ(A)| = |ξ (S(f ;P, T )− A) |
≤ K‖S(f ;P, T )− A‖
< Kε1 = ε,

so S(ξ ◦ f ;P, T ) ∈ BR
ε (ξ(A)).

Hence Sδ(ξ ◦ f) ⊂ BR
ε (A). Since ε was arbitrary, it follows that ξ ◦ f ∈ R([a, b]) and

that 6.59 holds.

Results much stronger than Proposition 6.84 are true if V is finite-dimensional. We
show one of these next, and deduce as a corollary that if V is finite-dimensional, the
“if . . . then” in Proposition 6.84 can be strengthened to “if and only if”. For the next
few pages, to make visually clear which objects are elements of V and which are real
numbers, we will use boldface for elements of V and for V -valued functions. (However,
R still denotes the reals!)

Proposition 6.85 Assume that V has finite dimension n ≥ 1 and let {vi}ni=1 be a basis
of V . Let f ∈ Func([a, b], V ), and let f1, . . . , fn be the unique real-valued functions on
[a, b] defined by writing f pointwise in terms of a basis:

f(x) =
n∑
i=1

fi(x) vi for all x ∈ [a, b].

Then the V -valued function f is integrable if and only if each of the real-valued functions
fi is integrable. In the integrable case,∫ b

a

(f1v1 + · · ·+ fnvn) =

(∫ b

a

f1

)
v1 + · · ·+

(∫ b

a

fn

)
vn . (6.60)

Proof: Let {ξi : V → R}ni=1 be the coordinate functions on V determined by the basis
{vi}ni=1. (Thus ξi(

∑
j ajvj) = ai, w =

∑n
i=1 ξi(w)vi for all w ∈ V , and fi = ξi ◦ f for

1 ≤ i ≤ n.) Then for each i ∈ {1, . . . , n}, the function ξi is a linear transformation V → R,
so by Proposition 6.83 parts (b) and (a), ξi ∈ V ∗ and there exists Ki > 0 be such that
|ξi(w)| ≤ Ki‖w‖ for all w ∈ V . Select such K1, . . . , Kn and let K = max{Ki : 1 ≤ i ≤ n}.

First assume that f is integrable on [a, b], and let A =
∫ b
a

f(x) dx. For 1 ≤ i ≤ n let
Ai = ξi(A); thus A =

∑n
i=1Aivi. Let ε > 0, let ε1 = ε

K
, and let δ > 0 be such that

Sδ(f) ∈ BV
ε1

(A).

Let (P, T ) be a pointed partition of [a, b] of width less than δ. For each i ∈ {1, 2, . . . , n}
let Si = S(fi;P, T ). Define S = S(f ;P, T ); since wid(P ) < δ, we have ‖S−A‖ < ε1.
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Fix i ∈ {1, 2, . . . , n}. Since ξi : V → R is linear, we may apply Exercise 6.17 to obtain

ξi(S) = ξi (S(f ;P, T )) = S(ξi ◦ f ;P, T ) = S(fi;P, T ) = Si.

Hence, again using the linearity of ξi,

|Si − Ai| = |ξi(S)− ξi(A)| = |ξi(S−A)| ≤ Ki‖S−A‖ < Kε1 = ε.

Therefore we have produced δ > 0 such that for every arbitrary pointed partition
(P, T ) of width less than δ, we have S(fi;P, T ) ∈ BR

ε (Ai). Since ε was arbitrary, this

proves that fi is integrable and that
∫ b
a
fi = Ai. Since i ∈ {1, . . . , n} was arbitrary, this

is true for every i, and

∫ b

a

f = A =
n∑
i=1

Aivi =
n∑
i=1

(∫ b

a

fi

)
vi.

We have now shown that if f is integrable on [a, b], then (i) each component function fi
is integrable on [a, b], and (ii) the equality (6.60) holds. For the converse of the integrability
implication, assume now that fi is integrable on [a, b] for 1 ≤ i ≤ n.

Let Ai =
∫ b
a
fi , 1 ≤ i ≤ n, and let A =

∑n
i=1Aivi. Let ε > 0, let C =

∑n
i=1 ‖vi‖,

and let ε1 = ε
C

. For 1 ≤ i ≤ n let δi > 0 be such that Sδi(fi) ⊂ BR
ε1

(Ai), and let
δ = min{δi : 1 ≤ i ≤ n}.

Let (P, T ) be a pointed partition of [a, b] of width less than δ, and let S = S(f ;P, T ).
Then, again using Exercise 6.17,

S−A =
n∑
i=1

ξi(S)−
n∑
i=1

Aivi

=
n∑
i=1

[ξi(S(f ;P, T ))− Ai] vi

=
n∑
i=1

[S(ξi ◦ f ;P, T )− Ai] vi

=
n∑
i=1

(S(fi;P, T )− Ai) vi .
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Hence

‖S−A‖ ≤
n∑
i=1

‖(S(fi;P, T )− Ai) vi‖

=
n∑
i=1

|S(fi;P, T )− Ai| ‖vi‖

<

n∑
i=1

ε1‖vi‖

= ε1C = ε.

Therefore we have produced δ > 0 such that ‖S −A‖ < ε for all S ∈ Sδ(f). Since ε
was arbitrary, it follows that f is integrable on [a, b].

Corollary 6.86 Assume that V is finite-dimensional and let f ∈ Func([a, b], V ). Then
f ∈ R([a, b], V ) if and only if for every ξ ∈ V ∗ we have ξ ◦ f ∈ R([a, b]).

Proof: The “only if”part of the implication follows from Proposition 6.84. For the “if”
part, assume that for every ξ ∈ V ∗ we have ξ ◦ f ∈ R([a, b]). If dim(V ) = 0 then
trivially f ∈ R([a, b], V ), so assume that n := dim(V ) ≥ 1. Let {v1, . . . ,vn} be a basis
of V , and, as in the proof of Proposition 6.85, let {ξi : V → R}ni=1 be the corresponding
coordinate functions on V . Then for each i, we have ξi ∈ V ∗, so (by our hypothesis) ξi ◦ f
is integrable. But ξi ◦ f is exactly the function fi in the statement of Proposition 6.85.
Hence that Proposition implies that f is integrable.

Remark 6.87 Equation (6.60) formally looks very similar to

∫ b

a

(
m∑
i=1

cifi

)
=

m∑
i=1

ci

∫ b

a

fi (where c1, . . . cm ∈ R), (6.61)

just with the real constants ci in (6.61) replaced by “vector constants” vi that happen to
form a basis of V . But (6.60) and (6.61) are really very different statements. The equality
(6.61) is one version of the statement that (i) R([a, b]), the set of integrable real-valued

functions on [a, b], is a vector space and that (ii) “
∫ b
a
” is a linear map R([a, b])→ R. The

only meaning of “
∫ b
a
” in this equality is integration of a real-valued function on [a, b]. The

number of functions m is arbritrary; it’s not related to the dimension of anything (unlike
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the n in (6.60)). The corresponding statement for V -valued functions is not (6.60); it’s

that (i) R([a, b], V ), is a vector space and that (ii) the map
∫ b
a

: R([a, b], V )→ V is linear:∫ b

a

(
m∑
j=1

cjfj(x)

)
dx =

m∑
j=1

cj

∫ b

a

fj(x) dx (6.62)

for all m ∈ N, all f1, . . . , fm ∈ R([a, b], V ), and all c1, . . . , cm ∈ R.

In (6.62), like in (6.61), the notation “
∫ b
a
” has only one meaning, but in (6.62) the meaning

is integration of a V -valued function on [a, b].

Equation (6.60) may be interpreted, informally, as saying that the basis vectors vj
behave as “vector constants” that can be pulled through the integral sign “just like” scalar
constants (real numbers). But the “just like” is inaccurate. As noted above, in equation

(6.61) the notation “
∫ b
a
” has the same meaning on both sides of the equation; it is a single

operator (fancy name for function) on one vector space, R([a, b], V ). In (6.60), the same

notation “
∫ b
a
” is used for two different operators, the one on the left-hand side having

domain R([a, b], V ), and the one on the right-hand side having domain R([a, b]). The
operators are conceptually similar, but they have very different domains. It is important
to keep in mind that while “Vector constants can be pulled through the integral sign
just like scalar constants” is something that could be conjectured, even expected, before
proving anything, there is no such thing as “proof by analogy”.

We will say more about equation (6.60) later in Remark 6.94, after establishing some
more results. N

Proposition 6.88 Assume that V is finite-dimensional. If f : [a, b] → V is integrable,
then the real-valued function x 7→ ‖f(x)‖ is integrable.

Proof: Let g denote the function x 7→ ‖f(x)‖.
If dim(V ) = 0 then f is the constant function 0V and g is the constant function 0,

which is integrable.

Assume now that n := dim(V ) ≥ 1 and let {vi}ni=1 be a basis of V . Since every element
of V is a unique linear combination

∑
i aivi, we can define a function ‖ ‖1 : V → R by

‖
∑

i aivi‖1 =
∑

i |ai|. As the student may easily show, ‖ ‖1 is a norm on V . (The proof
is virtually identical to the proof that the `1-norm on Rn is a norm.)

As in Proposition 6.85, let f1, . . . fn be the component-functions of f determined by
this basis, i.e. the unique real-valued functions such that f =

∑
i fivi. By Proposition

6.85, each component-function fi is integrable, hence also bounded (thus Theorem 6.30
applies to fi).

By Proposition 6.83(3), the norm ‖ ‖1 is equivalent to the given norm ‖ ‖ on V . Let
c > 0 be such that for all v ∈ V , ‖v‖ ≤ c‖v‖1.
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Let ε > 0. For each i ∈ {1, . . . , n} let δi be such that Uδi(fi) − Lδi(fi) < ε
cn

; such δi
exist by the “(i) =⇒ (iii)” implication of Theorem 6.30. Let δ = min{δ1, . . . , δn}. Then
for any P ∈ Pδ([a, b]) and each i ∈ {1, . . . , n} we have

U(fi;P )− L(fi;P ) ≤ Uδ(fi)− Lδ(fi) ≤ Uδi(fi)− Lδi(fi) <
ε

cn
.

Let P = {x0, . . . , xN} ∈ Pδ([a, b]). For 1 ≤ i ≤ n and 1 ≤ j ≤ N let Mi,j =
sup{fi(x) : x ∈ [xj−1, xj]} and mi,j = inf{fi(x) : x ∈ [xj−1, xj]}. Observe that for
any s, t ∈ [xj−1, xj], and any i ∈ {1, . . . , n}, we have fi(s) − fi(t) ≤ Mi,j − mi,j, and
fi(t)− fi(s) ≤Mi,j −mi,j, so

|fi(s)− fi(t)| ≤Mi,j −mi,j. (6.63)

Let T = {t1, . . . , tN} and T ′ = {t′1, . . . , t′N} be arbitrary pointings of P . Then, using the
triangle inequality in the form ‖a‖ − ‖b‖ ≤ ‖a− b‖, we have

S(g;P, T )− S(g;P, T ′) =
N∑
j=1

(‖f(tj)‖ − ‖f(t′j)‖)∆j

≤
N∑
j=1

‖f(tj)− f(t′j)‖∆j

≤
N∑
j=1

c‖f(tj)− f(t′j)‖1 ∆j

= c
N∑
j=1

(
n∑
i=1

|fi(tj)− fi(t′j)|

)
∆j

= c
n∑
i=1

(
N∑
j=1

|fi(tj)− fi(t′j)|∆j

)

≤ c
n∑
i=1

(
N∑
j=1

(Mi,j −mi,j)∆j

)
(using (6.63))

= c

n∑
i=1

(U(fi;P )− L(fi;P ))

< c
n∑
i=1

ε

cn

= ε.

Thus S(g;P, T ) − S(g;P, T ′) < ε for all pointings T, T ′ of P . Taking the supremum
over T and then the infimum over T ′, we deduce that U(g;P )− L(g;P ) ≤ ε. Since ε was
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arbitrary, it follows from Proposition 6.43 that g is integrable.

We are done restricting attention to finite-dimensional V for now, so we resume using
non-boldface letters for elements of V and for V -valued functions.

Proposition 6.89 (“Triangle inequality for integrals”) Let f ∈ R([a, b], V ), and
let ‖f(·)‖ : [a, b]→ R denote the function x 7→ ‖f(x)‖. Then∥∥∥∥∫ b

a

f

∥∥∥∥ ≤ lim
δ→0

Uδ(‖f(·)‖). (6.64)

Hence if ‖f(·)‖ is integrable, ∥∥∥∥∫ b

a

f(x) dx

∥∥∥∥ ≤ ∫ b

a

‖f(x)‖ dx. (6.65)

Our nickname “triangle inequality for integrals” really refers only to inequality (6.65).
The reason for this nickname is discussed later in item 5 of Remark 6.94.

Proof of Proposition 6.89: Let us write A =
∫ b
a
f and g = ‖f(·)‖.

Let ε > 0, and let δ > 0 be such that Sδ(f) ⊂ BV
ε (A). Let P ∈ Pδ([a, b]) and let

T = {t1, . . . , tN} be a pointing of P . Then, using the iterated triangle inequality,

‖S(f ;P, T )‖ =

∥∥∥∥∥
N∑
j=1

f(tj)∆j

∥∥∥∥∥ ≤
N∑
j=1

‖f(tj‖∆j

= S(g;P, T )

≤ U(g;P ) (by the definition of U(g;P ))

≤ Uδ(g) (by the definition of Uδ(g)).

But ‖S(f ;P, T )− A‖ < ε, so

‖A‖ ≤ ‖A− S(f ;P, T )‖+ ‖S(f ;P, T )‖ < ε+ ‖S(f ;P, T )‖ ≤ ε+ Uδ(g);

i.e. ‖A‖ < Uδ(g) + ε. Hence, by an order-property of real-valued limits,

‖A‖ ≤ lim
δ→0

Uδ(g) + ε.

Since ε was arbitrary, we conclude that ‖A‖ ≤ limδ→0 Uδ(g), which is (6.64).

If g is integrable, then limδ→0 Uδ(g) =
∫ b
a
g (by Theorem 6.30), so (6.64) reduces to

(6.65).

Observe that, by Proposition 6.88, if V is finite-dimensional, then under the hypothe-
ses of Proposition 6.89 the function ‖f(·)‖ is automatically integrable, so the stronger
conclusion (6.65) holds. We record this fact later in Corollary 6.93.
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Remark 6.90 (Optional reading, intended for students who have read Section 6.4.) In
view of the Darboux theorem mentioned in Section 6.4, we can alternatively write (6.64)
as ∥∥∥∥∫ b

a

f(x) dx

∥∥∥∥ ≤ ¯∫ b

a

‖f(x)‖ dx.

N

Proposition 6.91 (“Continuous implies integrable”) If f : [a, b] → V is continu-
ous, then f is integrable.

Proof: Let f be a continuous function from [a, b] to V . Since [a, b] is compact, f is
uniformly continuous. Let ε > 0, and let δ > 0 be such that if x, y ∈ [a, b] and |x− y| < δ
then ‖f(x)− f(y)‖ < ε1 := ε

2(b−a) .

Let P1 = {x0, . . . , xN1}, P2 = {y0, . . . , yN2} ∈ Pδ([a, b]). Let P = P1 ∪ P2 =
{z0, . . . , zN}; then P ∈ Pδ([a, b]) as well. For 1 ≤ j ≤ N1 let ij ∈ {1, 2, . . . N} be
the index for which xj = zij . (It is helpful to draw a diagram of the interval [a, b] to follow
the proof from this point on.) Let T1 = {t1, . . . , tN1}, T = {s1, . . . , sN} be pointings of
P1, P respectively. Then

S(f ;P1, T1)− S(f ;P, T ) =

N1∑
j=1

f(tj)(xj − xj−1)−
N∑
i=1

f(si)(zi − zi−1)

=

N1∑
j=1

f(tj)

 ij∑
i=ij−1+1

(zi − zi−1)

− N1∑
j=1

 ij∑
i=ij−1+1

f(si)(zi − zi−1)


=

N1∑
j=1

 ij∑
i=ij−1+1

(f(tj)− f(si))(zi − zi−1)

 .

Note that in the expression “f(tj)− f(si)” on the last line, we have ij−1 ≤ i− 1 < i ≤ ij,
implying xj−1 ≤ zi−1 ≤ si ≤ zi ≤ xj. Thus si lies in [xj−1, xj], as does tj. Since
xj − xj−1 < δ, we have |tj − si| < δ, implying ‖f(tj) − f(si)‖ < ε1. Therefore, applying
the iterated triangle inequality, we have
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‖S(f ;P1, T1)− S(f ;P, T )‖ ≤
N1∑
j=1

∥∥∥∥∥∥
 ij∑
i=ij−1+1

(f(tj)− f(si))(zi − zi−1)

∥∥∥∥∥∥
≤

N1∑
j=1

 ij∑
i=ij−1+1

‖(f(tj)− f(si))(zi − zi−1)‖


=

N1∑
j=1

 ij∑
i=ij−1+1

(zi − zi−1)‖(f(tj)− f(si))‖


<

N1∑
j=1

 ij∑
i=ij−1+1

(zi − zi−1)ε1

 (6.66)

= ε1

N∑
i=1

(zi − zi−1) (6.67)

= ε1(b− a) (6.68)

=
ε

2
. (6.69)

Thus, ‖S(f ;P1, T1) − S(f ;P, T )‖ < ε
2

. Similarly, ‖S(f ;P2, T2) − S(f ;P, T )‖ < ε
2

.
Hence

‖S(f ;P1, T1)− S(f ;P2, T2)‖ ≤ ‖S(f ;P1, T1)− S(f ;P, T )‖+ ‖S(f ;P, T )− S(f ;P2, T2)‖
<

ε

2
+
ε

2
= ε.

Therefore for any S1, S2 ∈ Sδ(f) we have ‖S1 − S2‖ < ε. Since ε was arbitrary, it
follows from Proposition 6.81 that f is integrable on [a, b].

Remark 6.92 The argument above gives a second proof that continuous real-valued func-
tions on [a, b] are integrable, without relying on the Proposition 6.43 (the “Step-function
lemma”).

Corollary 6.93 Let f ∈ R([a, b], V ). If either (a) V is finite-dimensional or (b) f is
continuous, then the real-valued function x 7→ ‖f(x)‖ is integrable, and∥∥∥∥∫ b

a

f(x) dx

∥∥∥∥ ≤ ∫ b

a

‖f(x)‖ dx. (6.70)
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Proof: Let g denote the function x 7→ ‖f(x)‖. Under hypothesis (a), Proposition 6.88
implies that g is integrable. Under hypothesis (b), g is the composition of the continuous
function f : [a, b]→ V with the continuous function ‖ ‖ : V → R. (Students: why is the
latter function is continuous?) Hence g is continuous, so by Theorem 6.51, g is integrable.

Thus, under either hypothesis (a) or (b), the function g is integrable. Therefore
Proposition 6.89 shows that the inequality (6.70) holds.

Remark 6.94 It is worthwhile to revisit the Calculus 3 version of (6.60):

∫ b

a

(f1(t)i+f2(t)j+f3(t)k)dt =

(∫ b

a

f1(t)dt

)
i+

(∫ b

a

f2(t)dt

)
j+

(∫ b

a

f3(t)dt

)
k. (6.71)

In Calc 3 we are taught that (6.71) is the definition of the left-hand side of the equation.
Now that we have proven Proposition 6.85, we see that for the case V = R3, with any
norm (since they are all equivalent), the definition given in Calc 3 is equivalent to the
loftier Definition 6.76. But the loftier definition, while requiring more sophistication and
more work, has several advantages:

1. It shows from the start that we can define integrals of V -valued functions for any
finite-dimensional vector space, not just Rn.

2. It shows from the start that, given a finite-dimensional vector space V , we do not
need to be given a basis of V in order to define integrals of V -valued functions.

3. It incorporates the principle that integration is about adding stuff up.

4. It is an elegant generalization of the definition of integrals of real-valued functions:
essentially nothing changed in passing from Definitions 6.5 and 6.7 to Definitions
6.75 and 6.76; all we had to do was to replace absolute-value symbols by norm
symbols.

5. It enables us to prove Proposition 6.89 very easily, and to show why, for finite-
dimensional V , we obtain the inequality in Corollary 6.93 for any norm whatsoever
on V . We saw that the inequality (6.64) follows simply from applying the triangle
inequality to Riemann sums. The stronger inequality (6.70)—simply (6.65) stated
again—then followed (for finite-dimensional V ) as soon as we showed that the point-
wise norm of an integrable V -valued function is an integrable real-valued function,
which we saw is true for any norm on V . Inequality (6.65) or (6.70) can be viewed
as the iterated triangle inequality generalized from finite sums to integrals.

With the generalized Calc 3 definition, the result of Corollary 6.93 in the finite-
dimensional case can also be proven, with a little cleverness but not much difficulty,
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for a Euclidean norm on V—one that comes from an inner product. A standard
argument (starting from the generalized Calc 3 definition), presented in [6,7], makes
use of the Cauchy-Schwartz inequality for inner products to obtain (6.70). Unfor-
tunately, this argument obscures the fundamental reason why (6.70) ought to be
true. In addition, not every norm on Rn, or on a general finite-dimensional vector
space, is Euclidean (an `2 norm); it need not even be an `p-norm for any p. Thus,
with a general norm on V , the argument based on the Cauchy-Schwartz inequality
does not yield even the integrability of the pointwise norm of an integrable V -valued
function, let alone the inequality (6.70).

6. By defining the integral without reference to a basis, the loftier definition guarantees
that the value of the integral is independent of the choice of basis (a fact that needs
to be proven, even for the case V = R3, if we use the Calc 3 definition).

7. The loftier definition tells us (after proving Proposition 6.85) why equation (6.71)
should be true; that it’s not just a definition introduced for convenient bookkeeping.

8. The loftier definition does not even require V to be finite-dimensional; it requires
only that V be a complete normed vector space. (We have seen several examples of
infinite-dimensional complete normed vector spaces in MAA 4211–4212: the space
`∞(R), and the space C(X) for any compact metric space X.) The Calc 3 definition
does not generalize to infinite-dimensional V .

The advantages listed above of the loftier definition are only one side of the coin,
however. Even at levels more advanced that MAA 4211–4212, there are good textbooks
(such as [6, 7]) and good teachers who prefer the “generalized Calc 3 definition” of an
Rn-valued function (with Calc 3’s R3 replaced by Rn), assumed bounded from the start.
This approach defines away the need to prove Propositions 6.80, 6.84, and 6.85, and
thereby enables other results to be written down sooner11, albeit at the expense of some
insight and generality. (Additional time is saved, in this approach, by stating and proving
Proposition 6.88 only for the Euclidean norm, rather than for an arbitrary norm.) In
this approach, the fact that the integral of an integrable Rn-valued function has a basis-
independent characterization is something proven, rather than something that drops out
of the definition of “integral”. This is an instance of something quite common in mathe-
matics: often there are two (or more) approaches to the same topic, with some theorems
in approach A being definitions in approach B and vice-versa. N

Remark 6.95 The Fundamental Theorem of Calculus (FTC) also generalizes to V -
valued functions. However, since in MAA 4212 we have not yet defined derivatives of
anything other than real-valued functions, the statement and proof of the FTC in this
setting are not included in this chapter.

11As a practical matter, this can be very important, since semesters have finite length! But several
times in his mathematical life, the author of these notes has been grateful that he learned the “invariant”
definition, i.e. Definition 6.76, early on, so his preference is to expose students to this approach.
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6.10 Logarithmic and exponential functions

[NOT YET WRITTEN]
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