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MAA 4212—Improper Integrals

The Riemann integral, while perfectly well-defined, is too restrictive for many pur-
poses; there are functions which we intuitively feel “ought” to be integrable, but which
are not Riemann integrable according to the definition. For example, the expression∫ 1

0

1√
t
dt

makes no sense as a Riemann integral, since the integrand is not defined at t = 0. Even
if we fix that problem, by defining a function that’s t−1/2 for t > 0 and (say) 0 for t = 0,
this new function is still not Riemann-integrable over [0, 1] because it isn’t bounded.
However, if formally make the change of variables t = u2 (“formally” means “shoot first,
ask questions about validity later”), the integral above gets transformed into∫ 1

0

2 du,

which is as nice an integral as they come. Furthermore, if we go back to our original
integral and think of it as representing area under a curve, there is a useful sense in which
this area is finite: take the area below the curve between t = ε and t = 1, and let ε→ 0.
Either way of looking at the original integral, the answer we formally calculate is 2. These
considerations suggest that we ought to enlarge the class of functions we’re willing to call
“integrable”, and modify our definition of “integral”. The types of integrals we’ll deal
with in this handout are often called “improper integrals”, but we’ll simply call them
“integrals” here.

Terminology. In this handout, the words “integral” and “integrable” will not be
synonymous with “Riemann integral” and “Riemann-integrable”. (In Rosenlicht, they
are synonymous, but we will need to be clearer here on what notion of integration we’re
talking about.) We will use notation “Riemann

∫ b
a
f(t)dt” (with the word “Riemann” in

front of the integral sign) to denote the Riemann integral. Whenever we write hypotheses
such as “Let f : [a, b] → R”, we understand this as short-hand for “Let a, b ∈ R with
a < b and let f : [a, b] → R;” analogous interpretations apply if [a, b] is replaced by
(a, b], [a, b), or (a, b). Also, we write “limx↑a” and “limx↓a” in place of limx→a−, limx→a+
respectively.

§1 Integrals over bounded intervals.

Definition 1. We will say that a real-valued function f is GR-integrable (for “generalized
Riemann integrable”) on the interval [a, b] if either

(i) f is defined on (a, b] and is Riemann-integrable over [y, b] for all y ∈ (a, b], and

limy↓a Riemann
∫ b
y
f(t)dt exists; or
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(ii) f is defined on [a, b) and is Riemann-integrable over [a, y] for all y ∈ [a, b), and
limy↑b Riemann

∫ y
a
f(t)dt exists.

(This is a temporary definition that will be generalized and finalized in Definition 3.)

Note that if f satisfies both conditions (i) and (ii), then it is Riemann-integrable over
[a, b]. In particular, every Riemann-integrable function is GR-integrable.

Note. The terms “generalized Riemann integral” and “GR-integrable” are specific to
these notes; they are not standard terminology.

Exercise.
1. Suppose f : [a, b]→ R is Riemann-integrable on [a, b]. Prove that for all c ∈ [a, b], the
functions g, h defined by g(x) = Riemann

∫ x
c
f(t)dt, h(x) = Riemann

∫ c
x
f(t) dt are

continuous.

In particular, Exercise 1 implies that if f is Riemann-integrable on [a, b], then

lim
y↓a

[Riemann

∫ b

y

f(t)dt] = Riemann

∫ b

a

f(t)dt (1)

and

lim
y↑b

[Riemann

∫ y

a

f(t)dt] = Riemann

∫ b

a

f(t)dt. (2)

This suggests using equations (1) and (2) to define the integral in certain non-Riemann-
integrable cases.

Definition 2. Let f : [a, b]→ R. If f satisfies condition (i) in Definition 1, we define the
generalized Riemann integral∫ b

a

f(t)dt = lim
y↓a

[Riemann

∫ b

y

f(t)dt]. (3)

Similarly if f satisfies condition (ii) in Definition 1, we define∫ b

a

f(t)dt = lim
y↑b

[Riemann

∫ y

a

f(t)dt]. (4)

In both cases we will say that f is GR-integrable on [a, b].

Note. In place of saying “f is GR-integrable”, we often say “the integral exists” or
“the integral converges”.

Equations (1)–(2) show that there is no ambiguity in Definition 2; if f satisfies both
(i) and (ii) in Definition 1, then the limits in equations (3) and (4) are equal. Moreover,

if f is Riemann-integrable on [c, d] then
∫ d
c
f(t)dt = Riemann

∫ d
c
f(t)dt. Hence if f is

GR-integrable on [a, b] we may write equations (3) and (4) more simply as
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∫ b

a

f(t)dt = lim
y↓a

∫ b

y

f(t)dt = lim
y↑b

∫ y

a

f(t)dt. (5)

In the exercises below we will develop a useful comparison test for telling whether
certain functions are GR-integrable. To prove the comparison test valid it is helpful to
have the following simple lemma, which is an analog of (and is equivalent to) the Cauchy
criterion for sequences. (This is essentially the Proposition on p. 74 of Rosenlicht, but it
was phrased there in too narrow a way for our purposes.)

Lemma 1. Let (E, d), (E ′, d′) be metric spaces. Assume that p0 is a cluster point of E,
that E ′ is complete, and that f is a function from E to E ′. Then limp→p0 f(p) exists iff
for all ε > 0 there exists δ > 0 such that d′(f(p), f(q)) < ε whenever d(p, p0) and d(q, p0)
are both < δ.

Proof. ( =⇒ ) Assume the limit exists and has value L ∈ E ′. Let ε > 0. Then there
exists δ such that d(p, p0) < δ implies d′(f(p), L) < ε/2. Hence if p, q ∈ Bδ(p0), the
triangle inequality implies d′(f(p), f(q)) < ε.

(⇐=) Let ε > 0, and choose δ > 0 such that p, q ∈ Bδ(p0) implies d′(f(p), f(q)) < ε/2.
Since p0 is a cluster point of E there exists a sequence {pn} converging to p0. Let N be
such that n ≥ N implies pn ∈ Bδ(p0). Then for n,m ≥ N we have d′(f(pn), f(pm)) < ε/2,
so the sequence {f(pn)} is Cauchy. Since E ′ is complete, this sequence converges, say to
L. Let n ≥ N be such that d′(f(pn), L) < ε/2 and let q ∈ Bδ(p0). Then d′(f(q), L) ≤
d′(f(q), f(pn)) + d′(f(pn), L) < ε, so limq→p0 f(q) exists (and equals L).

An equivalent form of this lemma is the first sentence of:

Lemma 1′. Let the hypotheses be as in Lemma 1. Then limp→p0 f(p) exists iff for every
sequence (pn) that converges to p0, the sequence f(pn) converges. If limp→p0 f(p) exists,
then it equals limn→∞ f(pn) for every sequence (pn) that converges to p0.

Remark. We have used a weaker version of this lemma before: limp→p0 f(p) exists iff
there exists L such that for every sequence (pn) that converges to p0, the sequence f(pn)
converges to L. Lemma 1′ strengthens the “⇐=” implication by removing the assumption
that the sequences {f(pn)} have the same limit.

Proof of Lemma 1′. (“ =⇒ ” direction of first sentence of conclusion): Turn the crank.

(“⇐=” direction of first sentence of conclusion, and second sentence of conclusion)
Suppose that whenever pn → p0, (f(pn)) converges. Choose two such sequences (pn), (qn),
and suppose f(pn)→ L1 while f(qn)→ L2. The “spliced” sequence p1, q1, p2, q2, . . . also
converges to p0, but if L1 6= L2, the sequence f(p1), f(q1), f(p2), f(q2), . . . cannot converge.
Hence L1 = L2; i.e for all sequences (pn) converging to p0, the limiting value of f(pn) is
the same, say L. Now suppose that limp→p0 f(p) 6= L or doesn’t exist. Then there exists
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ε > 0 such that for all n, there exists pn ∈ B1/n(p0) such that d′(f(pn), L) ≥ ε. Since
pn → p0, this is a contradiction.

Exercises.
2. Let b > a. Prove that f : x 7→ 1

(x−a)p is GR-integrable on [a, b] iff p < 1. (Here p can
be any real number. Thus for 0 < p < 1, f is GR-integrable but not Riemann-integrable
on [a, b].)

3. Let b > a. Assume f is Riemann-integrable on [y, b] whenever a < y ≤ b.
(Note that any function continuous on (a, b] satisfies this criterion, even if not defined or
continuous at a.) Assume there exists a function g : (a, b] → R, GR-integrable on [a, b],
such that |f(x)| ≤ g(x), ∀x ∈ (a, b]. Prove that f is GR-integrable on [a, b] and that

|
∫ b
a
f(x)dx| ≤

∫ b
a
g(x)dx.

4. Let b > a. Assume f is continuous on (a, b] and that, for some p < 1, the function
x 7→ (x− a)pf(x) is bounded on (a, b]. Prove that f is GR-integrable on [a, b].

5. State the analogs of exercises 2–4 with the roles of a and b reversed (i.e. with (a, b]
replaced by [a, b)). Essentially the same proofs work, of course.

6. Without using any reference to trigonometric functions or their inverses, prove
that

∫ 1

0
1√
1−t2dt exists (i.e. that (1 − t2)−1/2 is GR-integrable on [0, 1]). Remark: The

value of this integral can be taken as the definition of π/2.

In this handout, we will refer to a point x0 ∈ R as a singularity of f if x0 is in the
closure of the domain of f , but there exists no closed interval containing x0 over which
f , extended arbitrarily to x0 if x0 /∈ domain(f), is Riemann-integrable. To make the
concept more concrete, it’s useful to picture a function which is defined and continuous
near x0 but not at x0, and for which limx→x0 f(x) does not exist (e.g. 0 is a singularity of
x 7→ 1/x). Garden-variety functions to which Definitions 1 and 2 apply are functions that
are continuous on the interior of an interval but have a singularity at one endpoint or the
other, but not both. We next want to extend our definition of “GR-integrable on [a, b]”
to include functions that have singularities at more than one point (e.g. both endpoints)
and/or at an interior point of the interval of integration. Our extension will be based on
the next exercise, which you should think of as a generalization of the Proposition at the
bottom of p. 123 in Rosenlicht.

Exercise.

7. Prove that f is GR-integrable over [a, b], in the sense of Definition 2, if and only if
at least one of the following two conditions holds: (i) for all c ∈ (a, b), f is GR-integrable
over (a, c] and Riemann-integrable over [c, b], or (ii) for all c ∈ (a, b), f is Riemann-
integrable over [a, c] and GR-integrable over [c, b). When the integrals exist, prove that
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∫ b

a

f(t)dt =

∫ c

a

f(t)dt+

∫ b

c

f(t)dt. (6)

(End of exercise 7.)

Now suppose we have a function f defined on [a, b], continuous except for an interior
singularity at a single point c ∈ (a, b). If the GR-integrals over [a, c] and [c, b] exist, we can
define the GR integral of f over [a, b] by taking equation (6) as definition. Similarly, if f
is continuous on the interior but singular at both endpoints, and if for some interior point
c the GR integrals over [a, c] and [c, b] exist, then we can again take (6) as a definition
of the left-hand side. Finally, if we have a function which is continuous [a, b] except for
singular points s1, . . . , sn, we can chop up [a, b] into a finite number of sub-intervals on
which f has only one singularity (intersperse non-singular points yi with the si’s), and use
the analog of equation (6) with one term for each sub-interval to define the left-hand side.
Looking over what we’ve just said, we see that we never really needed f to be continuous
off the set of singular points (though that’s most commonly what we see in practice). Our
formal definition becomes:

Definition 3. Suppose the real-valued function f has the following property: there
exist points s0, s1, . . . , sn+1, with a = s0 and b = sn+1, such that f is defined at every
point of [a, b] except possibly the si’s, and such that for 0 ≤ i ≤ n, f is GR-integrable
over [si, si+1] in the sense of Definition 1. Then we say that f is GR-integrable over [a, b],
and define ∫ b

a

f(t)dt =
n∑
i=0

∫ si+1

si

f(t)dt. (7)

(Note that we don’t require f to be singular at the si’s; we simply allow it. In
general, to apply Definition 1 we’ll have to intersperse nonsingular points between the
singular points.)

There is a potential problem with this definition. In general, if f is GR-integrable over
[a, b], there will be infinitely many choices for the si. For example, if f(x) = [x(1−x)]−1/2

on [0,1], we could choose s1 to be any number strictly between 0 and 1. For the integral
over [0, 1] to be well-defined, we need to know that the right-hand side of (6) does not
depend on where we put the non-singular si’s.

Exercise.
8. Prove that for functions GR-integrable according to Definition 3,

∫ b
a
f(t)dt is

well-defined (i.e. does not depend on the choice of the points si).

§2 Integrals over unbounded intervals.
Next we want to allow for the possibility of integrating functions over infinite intervals

(e.g. [0,∞)). The most intuitive way to do this is the following.
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Definition 4. Let a ∈ R. We say f is GR-integrable on [a,∞) (or “
∫∞
a
f(t)dt

exists”, or “
∫∞
a
f(t)dt converges”) iff (i) for every y > a, f is GR-integrable over [a, y] (in

the sense of Definition 3), and (ii) limy→∞
∫ y
a
f(t)dt exists. In the GR-integrable case, we

define
∫∞
a
f(t)dt to be the value of this limit. We define “GR-integrable over (−∞, a]”

and “
∫ a
−∞ f(t)dt” similarly. We say f is GR-integrable on (−∞,∞) if it is GR-integrable

on (−∞, 0] and [0,∞), in which case we define
∫∞
−∞ f(t)dt =

∫ 0

−∞ f(t)dt+
∫∞
0
f(t)dt.

Exercises.
9. Prove that, in the definition of integrability over (−∞,∞), the number “0” could

have been replaced by any real number without changing the set of functions being called
GR-integrable or (in the GR-integrable case) the value of the integral.

10. Let a > 0. Prove that
∫∞
a

1
xp
dx exists iff p > 1. (Here p can be any real number.)

11. Determine all values of p for which
∫∞
0

1
xp
dx exists.

12. Let a ∈ R. Assume f is GR-integrable on [a, y] for all y > a. Assume there exists
a function g : (a,∞) → R, GR-integrable on [a,∞), such that |f(x)| ≤ g(x), ∀x > a.
Prove that f is GR-integrable on [a,∞) and that |

∫∞
a
f(x)dx| ≤

∫∞
a
g(x)dx.

13. Let a ∈ R. Assume f is continuous on (a,∞) and that, for some p > 1 and
some q < 1, the function x 7→ ((x− a)p + (x− a)q) f(x) is bounded on (a,∞). Prove
that

∫∞
a
f(t)dt exists.

14. Let ε > 0 and let r > −1. Prove that, no matter how small ε is or how large r
is,

∫∞
0
xre−εxdx converges.

15. Suppose f is defined on [a,∞) and f(x) ≥ 0 ∀x. Prove that if
∫∞
a
f(x)dx exists,

then lim infx→∞ f(x) = 0. (Note: previously we defined “lim inf” only for sequences, but
you should be able to figure out how to extend the definition to the current situation.)

Remark. The statement in exercise 15 would be false if “lim inf” were replaced
by “lim”. First, limx→∞ f(x) doesn’t have to exist for

∫∞
a
f(x)dx to exist. Second, it

is possible for the integral to converge even if there is a sequence (xn) → ∞ for which
f(xn) → ∞. As an example, consider a function f which is zero most places, except for
triangular spikes centered at the positive integers. For the spike centered at n, let the
base of the spike have width 2−2n and height 2 ·2n, so that the triangle has area 2−n. Then
it’s not hard to show that f is GR-integrable on [0,∞) and that the integral equals the
(convergent) geometric series

∑∞
1 2−n, even though f(n)→∞. If we drop the restriction

that f be nonnegative, it is easy to come up with other examples of counterintuitive
phenomena; see exercises 17-19.

§3 Change-of-Variables Formula.

Often a formal change of variables made to simplify the computation of an integral
turns a “proper” integral into an “improper” one, or vice-versa. Sometimes a change of
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variables turns one “improper” integral into another. One needs to know whether such
changes of variable are valid. For simplicity, we will state the theorem only for functions
defined on an interval of the form (a, b] or [b,∞) and which satisfy the corresponding
parts of Definitions 1 or 4. A more general statement isn’t hard to prove, but is messier
to state.

Change-of-Variables Theorem. Suppose f is continuous on an interval I, where
either (i) I = (a, b] or (ii) I = [b,∞). Let φ : I → R be continuous on I and continuously
differentiable on the interior of I. In case (i), suppose that

lim
t↓a

φ(t) = c,

where we allow the symbol c to stand for a real number or for ∞. (Thus we assume that
either the limit exists, or that limt↓a φ(t) =∞.) Similarly, in case (ii), suppose that

lim
t→∞

φ(t) = c,

where again c may stand for∞. Then in each case ((i) and (ii)) either both of the integrals∫ b

a

f(φ(t))φ′(t)dt,

∫ φ(b)

c

f(x)dx (8)

exist, or neither does. (If c = ∞ or c ≥ φ(b), see the last remark at the end of these
notes.) When the integrals exist, they are equal.

Proof. We will write out the proof only for the case in which I = (a, b] and c < φ(b)
is a real number; the other cases are similar.

Assume the second integral in (8) exists. Note that for u > a, the hypotheses of
Corollary 3 on p. 128 of Rosenlicht (the change-of-variables formula for “proper” integrals)

are satisfied with U = (u, b). By hypothesis limy↓c
∫ φ(b)
y

f(x)dx exists and limu↓a φ(u) = c.
Hence∫ φ(b)

c

f(x)dx = lim
y↓c

∫ φ(b)

y

f(x)dx = lim
u↓a

∫ φ(b)

φ(u)

f(x)dx = lim
u↓a

∫ b

u

f(φ(t))φ′(t)dt.

Thus the limit on the extreme right, which is the definition of
∫ b
a
f(φ(t))φ′(t)dt, exists

and equals the integral on the extreme left.
Conversely, suppose that the first integral in (8) exists. Then, as above, we have∫ b

a

f(φ(t))φ′(t)dt = lim
u↓a

∫ b

u

f(φ(t))φ′(t)dt = lim
u↓a

∫ φ(b)

φ(u)

f(x)dx.

Let yn ↓ c. Since limt↓a φ(t) = c, the Intermediate Value Theorem implies that φ maps
the interval (a, a + δ] onto (c, φ(a + δ)] for all δ < b − a. Thus there exists a sequence
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un → a such that yn = φ(un) for all n. Continuing the chain of equalities above, we then
have

lim
u↓a

∫ φ(b)

φ(u)

f(x)dx = lim
n→∞

∫ φ(b)

φ(un)

f(x)dx = lim
n→∞

∫ φ(b)

yn

f(x)dx.

Applying Lemma 1′, limy↓c
∫ φ(b)
y

f(x)dx exists and equals the first integral in (8).

Exercises.
16. Re-do exercise 10 by using exercise 1 and a change of variables.

17. Prove that if f : [0,∞) → R is a nonnegative, decreasing function, with
limx→∞ f(x) = 0, then

∫∞
0
f(x) sin(x)dx converges.

18. Prove that
∫∞
0

sin(x)dx does not converge, but that
∫∞
0

sin(x2) dx and∫∞
0

√
x sin(x2)dx do converge. (To understand what is “enabling” the last two integrals

to converge, even though the integrand is not approaching 0—and, in the last integral, is
even unbounded—it is instructive to graph the integrands.)

19. Prove that
∫ 1

0
sin( 1

x
)dx exists.

Final remarks.

1. From Definition 3 and equation (6) it is clear that “f GR-integrable on [a, b]”
does not require the function f even to be defined at a and b. Even if f(a) and
f(b) are defined, the values f(a), f(b) affect neither GR-integrability (or Riemann
integrability for that matter) nor the value of the integral. Therefore we define “GR-
integrable on (a, b],” “GR-integrable on [a, b),” and “GR-integrable on (a, b)” all to
mean the same thing as “GR-integrable on [a, b].” The terminology “GR-integrable
on (a, b)” is the most flexible, since it allows for the cases a = −∞ and b =∞.

2. So far we have defined integrals
∫ b
a
f(x) dx only when a < b. We extend our

definition to allow for a ≥ b in the same way as for Riemann integrals:

• In the generalized case if a > b we say that
∫ b
a
f(x) dx exists iff f is GR-

integrable on (b, a), in which case we define
∫ b
a
f(x) dx = −

∫ a
b
f(x) dx. (We

have used open-interval notation here in order include the cases in which a or
b is infinite.)

• For a ∈ R we declare every function to be GR-integrable over the “interval”
[a, a], with

∫ a
a
f(x) dx = 0.
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