
MAA 4212, Spring 2019—Assignment 1’s non-book problems

B1. Let X and Y be metric spaces, and let p ∈ X. A function f : X → Y is called
Lipschitz at p, or Lipschitz continuous at p, if there exist K > 0 and δ > 0 such that for
all q ∈ Bδ(p) := BX

δ (p),
dY (f(q), f(p)) ≤ KdX(q, p). (1)

(Note that, given X, Y , and f , if there is some K ∈ R that “works” in (1), then any
larger K also works, and hence there is some positive K that works. Hence the “K > 0”
requirement in the definition is superfluous, but is convenient for situations in which we
might want to divide by K.)

We call f Lipschitz (or Lipschitz continuous)—with no “at p0”—if there exists K > 0
such that for all p, q ∈ X, inequality (1) holds. (See Discussion of the terminology
“Lipschitz function” at the end of this assignment.)

(a) Prove that if f : X → Y is Lipschitz at p0 ∈ X, then f is continuous at p0
(justifying the terminology “Lipschitz continuous”).

(Note: The converse is false. For example, the square-root function from [0,∞) to R
is continuous but is not Lipschitz at 0.)

(b) Prove that if f : X → Y is Lipschitz then f is uniformly continuous.
(Again, the converse is false, with the square-root function providing a counterexam-

ple.)

B2. Let X be a nonempty set, let (Y, dY ) be a metric space, and let B(X, Y ) denote the
set of all bounded functions from X to Y . (Note that if Y is a bounded metric space,
then all functions X → Y are bounded, so in this case B(X, Y ) is the set of all functions
X → Y .) Let D′ be the uniform metric on B(X, Y ), as defined in class:

D′(f, g) = sup{dY (f(x), g(x)) | x ∈ X}

Below, “B(X, Y )” is used as short-hand for the metric space (B(X, Y ), D′).
In class we proved most of the following:

A sequence (fn)∞n=1 in B(X, Y ) converges in B(X, Y )
if and only if (fn) converges uniformly.

(2)

Omitted from classwork was the proof that if a sequence (fn) converges uniformly, then
the (pointwise) limit function is bounded. This ingredient is the result of Rosenlicht
problem IV.38, provided you assume in #38 that X is merely a nonempty set, rather
than a metric space. Below, you may assume fact (2).

(a) Prove that if Y is complete, then B(X, Y ) is complete.

(b) Show that B(N,R) = `∞(R) (i.e. the underlying sets are the same, and the
metrics are the same). Thus, part (a) above shows that `∞(R) is complete—a fact you
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proved a different way if you were in my section last fall and succeeded in doing problem
B4(c) on Homework Assignment 5, or were in a different section and succeeded in doing
the “challenge” part of Problem 6.7 in your section’s lecture notes. (My “`∞(R)” is the
“`∞” in those notes’ Problem 6.7.)

(c) For n ∈ N, let Jn = {1, 2, . . . , n}. Note that, for any n, every function Jn → R
is bounded. What is the relation between the metric spaces B(Jn,R) and (Rn, d∞)?

B3. Now let both X and Y be nonempty metric spaces, and let BC(X, Y ) ⊂ B(X, Y )
denote the set of bounded continuous functions X → Y . Let D denote the restriction to
BC(X, Y )× BC(X, Y ) of the uniform metric D on B(X, Y ). (As noted in class, if X is
compact then every continuous function X → Y is bounded, so that BC(X, Y ) = C(X, Y )
in this case, and D is exactly the uniform metric on C(X, Y ) in this case.)

(a) Prove that BC(X, Y ) is a closed subset of (B(X, Y ), D′).

(b) Prove that if Y is complete, then (BC(X, Y ), D) is complete. (In class we proved
that if X is compact and Y is complete, then C(X, Y ) is complete. What you’re proving
here is a generalization that does not require assuming X to be compact.)

Remark. In many areas of mathematics, an important question is: given a sequence
of functions that have some nice properties, if that sequence converges (in whatever sense
is of interest in context), does the limit function have those same nice properties? Part
of what fact (2) in problem B2, and problem B3, are asserting is that for the “nice
properties” of boundedness (in the setting of B2), or boundedness and continuity (in the
setting of B3), the answer is “yes” if our notion of convergence is uniform convergence or,
equivalently (by fact (2)), convergence in the metric space B(X, Y ).

Discussion of the terminology “Lipschitz function”. The definition of “Lips-
chitz function” can be rewritten as: f is Lipschitz if

∃K > 0 such that ∀p ∈ X and ∀q ∈ X, inequality (1) holds.

This notion can be generalized several ways. Temporarily (and arbitrarily) number-
ing some properties that every Lipschitz function has, let’s say that a general function
f : X → Y has:

• Property 1a if

∀p ∈ X, ∃K > 0 such that ∀q ∈ X, inequality (1) holds.

• Property 1b if

∀p ∈ X and ∀δ > 0, ∃K > 0 such that ∀q ∈ Bδ(p), inequality (1) holds.
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• Property 1c if

∀p ∈ X, ∃δ > 0 and ∃K > 0 such that ∀q ∈ Bδ(p), inequality (1) holds.

• Property 2 if for all p0 ∈ X, there exists δ0 > 0 such that the restriction of f to
Bδ0(p0) is Lipschitz; equivalently, if

∀p0 ∈ X, ∃δ0 > 0 and K > 0 such that ∀p, q ∈ Bδ0(p0), inequality (1) holds.

(We could also define f to have Property 2a, 2b, or 2c if for all p0 ∈ X, there exists δ0 > 0
such that the restriction of f to Bδ0(p0) has Property 1a, 1b, or 1c respectively, but the
properties obtained this way are not very interesting or useful, and if you write them out
with quantifiers they’ll make your head hurt.)

Observe that in Property 1a, K can depend on p; in Property 1b, K can depend on
p and δ; in Property 1c, both δ and K can depend on p, and each of δ and K can depend
on the other. Similarly, in Property 2, both δ0 and K can depend on p, and each of δ0
and K can depend on the other. But in our definition of “Lipschitz function”, K does
not depend on any choice of point, and there is no visible δ for it to depend on. Thus, our
definition of “f is Lipschitz” involves the principle of uniformity in two ways: the “K”
that can depend on various parameters in our four generalized properties, doesn’t, and
the δ or δ0 that can depend on other parameters in the generalized properties 1a, 1b, 1c,
and 2, is vacuously independent of parameters (in the definition of “f is Lipschitz”) by
virtue of being absent.

Property 2 is a property that will arise naturally once we learn about differentiation,
and has an actual name: f is called locally Lipschitz if it has Property 2.

Next, looking back at the definition of “f is Lipschitz at p”, observe that Property
1c is equivalent to: f is Lipschitz at p for every p ∈ X. Observe that this is weaker than
“f is locally Lipschitz” (Property 2 implies Property 1c—if we look at the special case
q = p0 in Property 2, we get Property 1c—but not vice-versa).

Based on common conventions in mathematics, “function with Property 1c”—i.e.
“function that is Lipschitz at every point”—ought to be the definition of “Lipschitz func-
tion” (think about how “continuous function” was defined), but unfortunately it isn’t; in
fact there is no standard, short name for Property 1c. This isn’t a great inconvenience,
because Property 1c rarely appears in theorems: it turns out that for any property relat-
ing to “Lipschitz” to be useful as a hypothesis (other than to deduce continuity), some
uniformity of the K in inequality (1) is needed, and it turns out in most circumstances in
which we’re able to prove that a function f is Lipschitz at each point, we can prove the
stronger statement that f is locally Lipschitz.

Nonetheless, a more logical name for what we are calling “Lipschitz function” is
“uniformly Lipschitz function”, and a more logical name for what we are calling “locally
Lipschitz function” is “locally uniformly Lipschitz function”. Some mathematicians, my-
self included (outside of this class), do include “uniformly” in these terms (see e.g. a
textbook that I learned from: Loomis & Sternberg, Advanced Calculus, Addison-Wesley
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(1968), p. 267). If I were king, everyone would include the “uniformly”, but since my
chances of becoming king are slim, you should learn what most people mean by “Lipschitz
function” and “locally Lipschitz function”, not just what I wish the terminology were.

As you saw in problem B1, Lipschitz functions are continuous. Note that continuity
is a local concept; continuity of a function f at a point p0 involves only the values of f at
points “close” to p0. If the metric space X is unbounded, the Lipschitz condition (1) for
a function f : X → Y imposes strong conditions not just on how rapidly dY (f(p), f(q))
gets small as q → p, but on how rapidly dY (f(p), f(q)) can grow as q gets very far from p.
Thus, for continuity issues, “locally Lipschitz” is a more relevant concept than just-plain
Lipschitz.
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