
MAA 4212, Spring 2019—Assignment 2’s non-book problems

B1. Let X and Y be metric spaces, (fn : X → Y )∞n=1 a sequence of functions, and
f : X → Y a function. Assume that there is a real-valued sequence (c(n))∞n=1 such that
(i) for all n ∈ N and x ∈ X, dY (fn(x), f(x)) ≤ c(n), and (ii) limn→∞ c(n) = 0. Prove
that (fn) converges uniformly to f .

Thus, to prove that a sequence (fn) converges uniformly to a given function f , it
suffices to find, for each n, a uniform upper bound c(n) on the distances dY (fn(x), f(x))
(where “uniform” means “independent of x”), with the property that c(n)→ 0 as n→∞.
In practice, this is virtually always how uniform convergence is shown (for a sequence of
functions that does converge uniformly). For example, on the previous assignment you
probably did Rosenlicht problem IV.34(a) this way.

Exercises on the Mean Value Theorem

All of the exercises below (though not all parts of them) make use of the Mean
Value Theorem (MVT) or its corollaries, in one form or another, but some require you
to use other theorems in addition. You may assume that the trigonometric and inverse
trigonometric functions have the derivatives you learned in Calculus I-II-III.

B2. Let I ⊂ R be an open interval, and f : I → R a function.

(a) Let x0 ∈ I. Prove that if f is differentiable at x0, then f is Lipschitz at x0.

(b) Prove that if f is differentiable, and the function f ′ : I → R is bounded, then f
is Lipschitz.

(c) Prove that if f is differentiable, and the function f ′ : I → R is continuous, then f
is locally Lipschitz. (Recall from the terminology discussion in Assignment 1’s non-book
problems that a function g : X → Y , where X and Y are metric spaces, is locally Lipschitz
if for all p ∈ X, there exists δ > 0 such that the restriction of g to Bδ(p) is Lipschitz.)

B3. Let a, b ∈ R, a < b.
(a) Assume that f, g : [a, b) → R are continuous, and are differentiable on (a, b).

Assume also that f(a) = g(a) and that f ′(x) > g′(x) for all x ∈ (a, b). Prove that
f(x) > g(x) for all x ∈ (a, b).

(b) Assume that f, g : (a, b] → R are continuous, and are differentiable on (a, b).
Assume also that f(b) = g(b) and that f ′(x) > g′(x) for all x ∈ (a, b). In this case, what
order-relation do f(x) and g(x) obey for x ∈ (a, b)?

In part (b), you are not being asked for a formal proof. Just state how, under the
hypotheses in (b), any inequalities you used for the proof in part (a) become modified,
and how this affects or does not affect the conclusion.
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B4. Prove that
(a)

x

1 + x2
< tan−1 x < x for all x > 0,

and
(b) x < sin−1 x <

x√
1− x2

for 0 < x < 1.

(Here “tan−1” and “sin−1” are the inverse tangent and inverse sine functions, also known
as “arctan” and “arcsin” respectively.)

B5. Prove that, for all x > 0,

(a) sin x < x,

(b) cos x > 1− x2

2
, and

(c) x− x3

3!
< sinx < x− x3

3!
+
x5

5!
.

(Warning: if you try to use Taylor’s Theorem for this problem—which is not recommended—
don’t forget that numbers of the form “sin c” or “cos c” can be negative as well as positive!)

B6. In class we proved that if I ⊂ R is an interval, f : I → R is continuous on I and
differentiable on I◦, and f ′(x) > 0 for all x ∈ I◦, then f is strictly increasing (i.e. x1 < x2
implies f(x1) < f(x2)). In this problem we show that the requirement “f ′(x) > 0 for
all x ∈ I◦” can be somewhat relaxed without affecting the conclusion. Parts (a), (b),
and (d) draw successively stronger conclusions, by using successively weaker hypotheses.
Each problem-part is intended to help you do the next part, with the exception that part
(c) is independent of parts (a) and (b).

(a) Let a, b ∈ R, with a < b. Assume that f : [a, b]→ R is continuous, is differentiable
on the open interval (a, b), that f ′(x) ≥ 0 for all x ∈ (a, b), and that f ′(x) = 0 for at most
finitely many x ∈ (a, b). Prove that f is strictly increasing on the closed interval [a, b].

(b) Let a, b ∈ R, with a < b. Assume that f : (a, b) → R is differentiable and that
f ′(x) ≥ 0 for all x ∈ (a, b). Let Z(f ′) = {x ∈ (a, b) | f ′(x) = 0} (the zero-set of f ′), and
assume that Z(f ′) has no cluster points in the open interval (a, b). Prove that f is strictly
increasing on (a, b).

(c) Let a, b ∈ R, with a < b. Assume that f : [a, b]→ R is continuous, and is strictly
increasing on the open interval (a, b). Prove that f is strictly increasing on the closed
interval [a, b]. (Note that no differentiability is assumed; this problem-part is independent
of the previous parts, and is intended as a lemma to help you get from part (b) of this
problem to part (d).)

(d) Hypotheses as in part (b). Prove that f is strictly increasing on the closed interval
[a, b].

(e) Define f : R→ R by f(x) = x− sinx. Prove that f is strictly increasing.
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