
MAA 4212, Spring 2019—Assignment 6’s non-book problems

B1. In class we proved the “alternating-series theorem”: if the real-valued sequence {an}
strictly alternates in sign, and |an| decreases monotonically to zero, then

∑
an converges.

Give a example showing that the monotonicity assumption in this theorem cannot be
removed. (I.e. find a counterexample to the following statement: if the sequence {an}
strictly alternates in sign, and limn→∞ an = 0, then

∑
an converges.) Show that the series

in your counterexample does, in fact, diverge.

B2. Let {a(m,n) | (m,n) ∈ N × N} be a “doubly indexed sequence” in R—a map
A : N ×N → R, where a(m,n) = A(m,n). It is sometimes useful to picture {a(m,n)} as
an “infinity-by-infinity matrix”. In this problem we are interested in attaching meaning
to the notation “

∑
m,n a(m,n),” also written “

∑∞
m,n=1 a(m,n)”. (Our notation “a(m,n)” can

also be replaced by any other notation for the values of a function N×N→ R, e.g. am,n
or A(m,n).)

Definition. The doubly-indexed series
∑

m,n a(m,n) is absolutely convergent (or converges
absolutely) if there exists a bijection f : N → N ×N such that

∑∞
j=1 af(j) is absolutely

convergent. (Said more loosely, we are calling the doubly-indexed series is absolutely
convergent if there is some order in which we can add up the entries of the “infinite
matrix” {a(m,n)} as the terms of an absolutely convergent singly-indexed series.)

(a) Prove that if
∑

m,n a(m,n) converges absolutely and f, g : N → N × N are bijec-
tions, then

∑∞
j=1 af(j) =

∑∞
j=1 ag(j). Hence if

∑
m,n a(m,n) converges absolutely, we can

unambiguously define ∑
m,n

a(m,n) =
∞∑
j=1

af(j)

where f is any bijection N→ N×N.

(b) Explain why we should not attach any numerical value (in R) to the notation
“
∑

m,n a(m,n)” if this doubly-indexed series is not absolutely convergent.

(c) Prove that if
∑

m,n a(m,n) is absolutely convergent then
∑∞

m=1 a(m,n) converges for all
n ∈ N,

∑∞
n=1 a(m,n) converges for all m ∈ N, and

∑
m,n

a(m,n) =
∞∑
m=1

(
∞∑
n=1

a(m,n)

)
=

∞∑
n=1

(
∞∑
m=1

a(m,n)

)
.

(d) Let
∑∞

n=1 bn,
∑∞

n=1 cn be absolutely convergent. Prove that
∑

m,n bmcn is absolutely
convergent, and that ∑

m,n

bmcn =

(
∞∑
n=1

bn

)(
∞∑
n=1

cn

)
.
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Remark. In the absolutely convergent case, enumerating N×N in the order

(1, 1)

(1, 2) (2, 1)

(1, 3) (2, 2) (3, 1)

...

leads us to ∑
m,n

a(m,n) =
∞∑
k=1

( ∑
n+m=k

a(m,n)

)
. (1)

One of the main reasons that the conclusions of problem B2 are important is the following
application to power series, in which the enumeration scheme in (1) appears naturally.
(For power series, we still index the terms using N

⋃
{0} rather than N, but aside from

the slight bookkeeping change this clearly makes no difference in the conclusions of B2.)
Suppose you are multiplying two polynomials together, say a0 + a1x + · · · + aNx

N (i.e.∑N
n=0 anx

n) and b0 + b1x + · · · + bMx
M (i.e.

∑M
m=0 bmx

m). After multiplying out, you
generally rewrite the result by grouping together all the terms with a given power of x,
which is the finite-series statement(

N∑
n=0

anx
n

)(
M∑
m=0

bmx
m

)
=

N+M∑
k=0

( ∑
n+m=k

anbm

)
xk.

Since power series are absolutely convergent on the interiors of their intervals of con-
vergence, parts (a) and (d) imply that on the interior of the smaller of the intervals of
convergence of two power series centered at 0, you can multiply the series together just
as if they were polynomials (with infinitely many terms). For fun, you might try to show
the identity sin2 x+ cos2 x = 1 or sin x cosx = 1

2
sin(2x) or (ex)2 = e2x this way.

B3. Here is a True/False test. Note that statements (a) and (b) have a hypothesis that
is missing in statements (c) and (d).

(a) If (an) is a sequence of non-negative real numbers, and
∑

n an converges, then∑
n a

2
n converges.

(b) If (an) is a sequence of non-negative real numbers, and
∑

n an converges, then∑
n a

3
n converges.

(c) If (an) is a sequence of real numbers and
∑

n an converges, then
∑

n a
2
n converges.

(d) If (an) is a sequence of real numbers and
∑

n an converges, then
∑

n a
3
n converges.

Take this True/False test and prove your answers. You have already done a problem that
addresses statement (a); this statement is included primarily for purposes of comparison
with parts (b) and (c). You will probably find (c) a little more difficult than (a) and (b).
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You will probably find (d) several orders of magnitude more difficult than (a), (b), or (c).
Think of (d) as extra credit rather than as a problem you are expected to be able to solve.

In the two problems below, which may end up being deferred to the next assignment,
you are allowed to use your knowledge of trigonometric functions and their derivatives.
In problem B5 you will derive a fun fact with which you can impress people at parties.1

B4. (a) Let a, b ∈ R, a < b. Suppose g : (a, b) → R is differentiable. Prove that if g′

is bounded, then there exists a continuous extension of g to the closed interval [a, b] (i.e.
there exists a continuous function g̃ : [a, b]→ R that coincides with g on (a, b)).

(b) Prove that the integration-by-parts formula (Rosenlicht p. 133/#17) generalizes to
the case in which u is replaced by a function g satisfying only the hypotheses in part (a).
(In the Rosenlicht problem, u′ is assumed to exist and be continuous on an open interval
containing [a, b].)

(c) Suppose g : (0, π)→ R is continuously differentiable and has bounded first derivative.
Prove that

lim
n→∞

∫ π

0

g(x) sin(nx) dx = 0.

(Hint: (a) and (b) come before (c). Suggestion: read part (d) before starting part (c).)

(d) Did part (c) involve interchanging the order of a limit as n → ∞ and an integral?
Would such an interchange even have been possible? Why or why not?

B5. In this problem, you are free to use the conclusion of the previous problem.
As you saw in previous homework, the integral test (Rosenlicht problem VII.9) implies

that
∑∞

n=1 1/np (called the p-series) converges for all real p > 1. The proof of the integral
test can be used to give crude upper and lower bounds on the sum, but not its exact value.
In this problem you will end up computing the exact value of

∑
1/n2, by roundabout

means.

(a) Let f : [0, π] → R be a continuous function. Suppose that f(0) = f(π) = 0, and
that f ′′ exists on (0, π) and extends to a continuous function on [0, π]. For 0 < x < π,
define g(x) = f(x)/ sin(x). Prove that the limit of g′ exists at both endpoints of [0, π],
and hence that g′ extends to a continuous (and therefore bounded) function on [0, π].

Note: this problem is one of those rare instances in which even a real mathematician
might use l’Hôpital’s Rule.

(b) Let f be as in part (a). Prove that

lim
n→∞

∫ π

0

f(x)
sin(nx)

sin(x)
dx = 0.

1Caution is advised if there’s anybody at the party whom you wish to date.
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(c) Verify that if n is any integer, then∫ π

0

x(π − x) cos(2nx) dx =

{
−π/(2n2), n 6= 0

π3/6, n = 0
.

(Note: for n 6= 0 the computation is simpler if you do not break the integral up into two
pieces, one for x2 cos 2nx and x cos 2nx.) Use this to prove that

∞∑
n=1

(∫ π

0

x(π − x) cos(2nx) dx

)
= −π

2

∞∑
n=1

1

n2
.

(d) Show that for all integers n ≥ 1,

cos(2x) + cos(4x) + cos(6x) + · · ·+ cos(2nx) =
1

2

(
sin((2n+ 1)x)

sin(x)
− 1

)
.

Use this to prove that

∞∑
n=1

(∫ π

0

x(π − x) cos(2nx) dx

)
= −1

2

∫ π

0

x(π − x)dx.

(e) Using the work above, determine the exact value of
∑∞

n=1
1
n2 .
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