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6 Riemann Integration

Integration (here meaning definite integration, not antidifferentiation1) is always about
“adding stuff up”. The “stuff” may be not be a finite, or even countable, set of numbers;
the “sum” may be something like amount of space between the graph of a positive function
f : [a, b]→ R (“area under a curve”), or the total mass or (electric) charge of a solid object
for which we know the “mass density” or “charge density” at each point. Generally, the
“stuff” is described in some way by a real-valued or vector-valued function on some subset
of Rn. Regardless of the dimension of the domain, or whether the function is real-valued
vs. vector-valued, or which theory of integration is used (there are several progessively
more general theories), the core idea that integration is about adding stuff up is always
there, even when its presence isn’t obvious. But to rigorize the vague “adding stuff up”,
one starts first with the simplest theory of integration, the subject of this chapter.

1In higher mathematics, “definite integration” is the default meaning of “integration”, unless context
makes it clear that antidifferentiation is meant.
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This chapter develops the theory of the Riemann integral of a real-valued (and, later, a
vector-valued) function f on a closed, bounded interval [a, b] ⊂ R. The approach we use is
very intuitive, rigorizing the “limit of Riemann sums” idea that’s presented in Calculus 1.
This approach, which uses the same definition of “Riemann integrable” as in Rosenlicht’s
textbook [5], has an additional advantage: it provides the most natural generalization to
integration of vector-valued functions. For integration of real-valued functions, however,
it is not the most efficient approach. A more efficient approach that (non-obviously)
turns out to be essentially equivalent is discussed in Section 6.4, as optional reading for
the interested student.

Throughout this chapter, when we use notation of the form “[a, b]”, it is understood
that a, b ∈ R and that a < b.

The symbol “N” is used in these notes to mark the end of a definition, remark, or
example. When all that is being defined is notation specific to these notes, sometimes we
label that definition as “Notation 6.x” to avoid giving the impression that this notation
is standard among mathematicians.

6.0 Overview of the chapter

In this chapter, first we will define (Riemann-)integrable real-valued function f on an

interval [a, b], and the integral
∫ b
a
f(x) dx (Section 6.1). From the definitions, based on

Riemann sums, it is not obvious which functions on [a, b] are integrable (for example,
it is not obvious that continuous functions are integrable). Rather than trying to apply
the definitions directly in many examples, which would be quite time-consuming, we first
establish several general properties (starting in Section 6.2), such as the fact that the set
R([a, b]) of integrable functions on [a, b] is a vector space and that the map R([a, b])→ R

given by f 7→
∫ b
a
f(x) dx is linear. In Section 6.3 we show that step-functions (Definition

6.42) are integrable, and develop an integrability criterion (for any f : [a, b] → R) based
on step-functions. We use this in Section 6.5 to establish that continuous functions on
[a, b] are integrable. (As mentioned earlier, the intervening Section 6.4, optional reading,
relates the approach taken in Sections 6.1–6.3 to a different approach preferred by many
mathematicians. This approach involves something called upper and lower integrals)

The methods presented in Section 6.3 rely on the concept of upper and lower sums in-
troduced there, as does the step-function-related integrability-criterion mentioned above
(and therefore, also, our proof that “continuous implies integrable” in Section 6.5). How-
ever, every important result that we prove using upper and lower sums can be proven
without them. We have used them in Sections 6.3 and 6.5 for two reasons: (1) they are
very helpful for developing a visual understanding of integration of real-valued functions,
and (2) upper and lower sums provide a bridge connecting the definitions of “integrable”
and “integral” in Section 6.1 to those based on upper and lower integrals in Section 6.4.
The approach to integration discussed in Section 6.4 relies critically on upper and lower
sums; there they are not simply a dispensable convenience.
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Section 6.6 establishes an additivity property reflecting the principle that “integration
is about adding stuff up”: if a < c < b and f is integrable on [a, b], then f is integrable

on the subintervals [a, c] and [c, b], and
∫ b
a
f(x) dx =

∫ c
a
f(x) dx+

∫ b
c
f(x) dx (the “amount

of stuff” between a and b is the amount of stuff between a and c plus the amount of stuff
between c and b). This is used in Section 6.7 to prove several theorems that go by the
name “The Fundamental Theorem of Calculus”, one of which is then used in Section 6.8
to prove the validity of the change-of-variable formula learned in Calculus 1.

In Section 6.9 we generalize from integrating real-valued functions on [a, b] to inte-
grating vector-valued functions on [a, b]. In this detour from real-valued functions, the
generality and strengths of the Riemann-sum approach to the Riemann integral—i.e. the
approach taken in Sections 6.1–6.3, as opposed to the approach taken in Section 6.4—
become more evident: for any complete normed vector space (V, ‖ ‖), we can define

“integrable function f : [a, b] → V ” and
∫ b
a
f(x) dx exactly the way we did for real-

valued functions (modulo obvious notational changes). In particular this applies to any
finite-dimensional vector space with any norm. When V = Rn, this definition of the
vector-valued integral agrees with the one taught in Calculus 3, but now we see the Calc-
3 definition as a corollary of something much more general. Our new definition of the
vector-valued integral makes no reference to a basis of V (which the Calc-3 definition does
implicitly or explicitly). We do not need V to be Rn, or even to be finite-dimensional. Sev-
eral of our results for real-valued functions generalize, without any change in the proofs,
to V -valued functions, e.g. linearity of the map f 7→

∫ b
a
f(x) dx. In addition, once we

establish an integrability criterion (Proposition 6.85) whose “V = R” case eliminates any
need for upper and lower sums (and, therefore, any need for the step-function-related
integrability-criterion we used for real-valued functions) we are able to prove generalized
versions, for V -valued functions, of other earlier results, e.g. the “triangle inequality for
integrals” (equations (6.31) and (6.72)) and the integrability of continuous functions.

Finally, in Section 6.10 we return to the real-valued case, and use our earlier results
to define the natural logarithm function and derive its properties. We use these to define
ar for all a > 0 and r ∈ R, using a unified definition that does not depend in any way on
whether r is positive or negative, is an integer, is rational, or is irrational. We see that
this elegant (albeit nonintuitive) definition reduces to the usual definition for rational
r, and implies that for irrational exponents, the “intuitive”l definition of ar actually
works—i.e. that ar can be defined unambiguously (if inelegantly) as a limit obtained
by approaching r through rational exponents. (It’s very unlikely that the student was
shown in high school, or wherever he/she first encountered irrational exponents, that this
definition is unambiguous, i.e. that the value of the limit is does not depend on which of
the uncountably many rational sequences approaching r is used.) We also show that all
the usual algebraic “rules of exponents” follow, and show the functions x 7→ ax (for any
a > 0) and x 7→ xr (for any r ∈ R) are differentiable and have the “expected” formulas for
their derivatives. For the function x 7→ xr with r irrational, this would be extraordinary
difficult using only the “intuitive” definition of xr, but with our unified definition the
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derivative computations are identical for all r.

6.1 Definitions and first examples

Definition 6.1 (Partitions) A partition P of a closed, bounded interval [a, b] is a finite
set {x0, x1, . . . , xN}, where a = x0 < x1 < · · · < xN = b. (Thus the number of points in
P is N + 1 ≥ 2.) N

Remark 6.2 This use of the word “partition” is special to intervals. The student may
be used to “partition of a set S” meaning a disjoint collection of subsets of S whose
union is S. In the setting of Definition 6.1, the interval [a, b] is the union of the subin-
tervals [xj−1, xj], 1 ≤ j ≤ N , but these subintervals are not disjoint (unless N = 1): for
0 < j < N , the point xj lies in two of these subintervals, as the right endpoint of one and
the left endpoint of another. We could express [a, b] as the disjoint union of N−1 half-open
intervals and one closed interval, e.g. [x0, x1) ∪ [x1, x2),∪ · · · ∪ [xN−2, xN−1) ∪ [xN−1, xN ]
or [x0, x1] ∪ (x1, x2] ∪ · · · ∪ (xN−2, xN−1] ∪ (xN−1, xN ], but the choice of which interval
should include a given xj (other than x0 and xN) would be asymmetric and artificial.
For purposes of integration, it turns out that 1-point overlaps are irrelevant (we will see
why later), so we allow ourselves to speak of [a, b] as being “partitioned” into the closed
subintervals {[xj−1, xj]} even though this is not quite consistent with the set-theoretic
notion. Finally, since the set of these closed subintervals is completely determined by
the set of their endpoints, and vice-versa, the exceptional meaning of “partition” in the
context of intervals doesn’t cause a problem once one gets used to it.

Notation 6.3 For each partition P = {x0, x1, . . . , xN} of an interval [a, b], we define
∆j(P ) = xj − xj−1, 1 ≤ j ≤ N . When a single partition P is understood from context,
we write simply ∆j rather than ∆j(P ). N

Observe that for any partition P of [a, b], we have

∑
j

∆j(P ) = b− a. (6.1)

Definition 6.4 (Pointed partitions and Riemann sums) Let a, b ∈ R be given, with
a < b, and let P = {x0, x1, . . . , xN} be a partition of [a, b].

1. We define the width of P (also called the mesh of P ), denoted wid(P ) in these notes,
to be max{∆j : 1 ≤ j ≤ N}.

2. A pointing T of P is a set T = {t1, . . . tN} such that tj ∈ [xj−1, xj] for each j ∈
{1, . . . , N}. We call the pair (P, T ) a pointed partition (of [a, b]). We define the
width of (P, T ) to be the width of P .
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3. Given f : [a, b]→ R and a pointing T = {t1, . . . tN} of the partition P , the Riemann
sum for f corresponding to the pointed partition (P, T ) is

S(f ;P, T ) =
N∑
j=1

f(tj)∆j . (6.2)

4. Given f : [a, b]→ R, we will write

S(f ;P ) = {S(f ;P, T ) : T is a pointing of P}
= the set of all Riemann sums of f associated with the partition P .

N

Note that every partition {x0, . . . , xN} has a pointing (in fact, uncountably many);
e.g. we can take tj = xj for 1 ≤ j ≤ N (the “right-endpoint pointing”).

For a general pointing of a partition, with notation as in Definition 6.4, we think of
the point tj as a “sample point” within the interval [xj−1, xj], providing a “sample value”
of f on this interval.

Remark 6.5 Observe that any interval [a, b] as above has partitions of arbitrarily small
width: given δ > 0, let N be any positive integer such that ∆ := b−a

N
< δ, let xj = a+ j∆

for 0 ≤ j ≤ N , and let P be the partition {x0, x1, . . . , xN}; we then have wid(P ) < δ.
Hence there also always exist pointed partitions of [a, b] arbitrarily small width.

Definition 6.6 (Integrability) A function f : [a, b]→ R is Riemann integrable if there
is a real number A such that for every ε > 0 there exists δ > 0 such that if (P, T ) is any
pointed partition of [a, b] of width less than δ, then |S(f ;P, T )−A| < ε. More generally,
if f is a real-valued function whose domain includes [a, b], we say that f is Riemann
integrable on [a, b] (or over [a, b]) if f |[a,b] is Riemann integrable. N

Notation 6.7 For a, b ∈ R with a < b, we will let R([a, b]) denote the set of all real-
valued functions on [a, b] that are Riemann-integrable. N

With notation as in Definition 6.6, suppose that A,A′ are two real numbers satisfying
the condition required of A in the definition. Let ε > 0 be given, and δ > 0 be such that
for every pointed partition of [a, b] of width less than δ, we have |S(f ;P, T )−A| < ε and
|S(f ;P, T )−A′| < ε. Let (Pδ, Tδ) be a pointed partition of [a, b] of width < δ; such (P, T )
exists by Remark 6.5. Then |A′−A| ≤ |A′−S(f ;Pδ, Tδ)|+ |S(f ;Pδ, Tδ)−A| < 2ε. Since
this is true for all ε > 0, it follows that A′ − A = 0, hence that A′ = A. Therefore if f is
integrable on [a, b], then there is a unique number A satisfying the condition in Definition
6.6. Thus we can make the following definition:
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Definition 6.8 (the Riemann integral) Let f : [a, b] → R be a Riemann-integrable
function. We define the Riemann integral of f to be the unique real number A satisfying
the condition given in Definition 6.6. This number is denoted∫ b

a

f(x) dx,

∫ b

a

f(t) dt, etc.; (6.3)

any letter not reserved with another meaning can be used in place of the “dummy” variable
x, t, etc., in the sample notation above. Since the name of the dummy variable does not
affect the value of the integral, in these notes we will also use the notation∫ b

a

f (6.4)

in place of (6.3). More generally, if f is a real-valued function on a domain that includes
[a, b], and f is integrable on [a, b], we use the same notation (6.3), (6.4) for the Riemann
integral of f |[a,b], and refer to the value of this integral as the Riemann integral of f over
[a, b].

Any conclusion of the form
∫ b
a
f = [specific number] implicitly means “f is integrable

on [a, b] and
∫ b
a
f = [that number],” if the integrability of f has not already been stated

explicitly.

Finally, we define the phrase “
∫ b
a
f exists” (or “

∫ b
a
f(x) dx exists”, etc. for any dummy

variable), to mean that f is integrable on [a, b]. N

Definitions 6.6 and 6.8 give precise meaning to the notion that a definite integral is a
“limit of Riemann sums”. It is tempting to write, suggestively, that the value of

∫ b
a
f(x) dx

is “limwid(P )→0 S(f ;P, T )”, but this limit-notation cannot be interpreted literally. The
quantity S(f ;P, T ) is not the value of a function of wid(P ), or even the value of a function
of P . For every δ > 0, there are infinitely many partitions of [a, b] of width δ, and for every
partition there are infinitely many pointings. Thus for every value of wid(P ), there can be
(and usually are) infinitely many values of Riemann sums associated with partitions of this
width. In the notation “limx→x0 g(x)” for the limit at x0 of a function g : U \ {x0} → R,
where U ⊂ R, for each x there is one and only one number g(x). However, there are
a few ways to write the integral of an integrable function as a true limit. The following
exercise gives one of these; Theorem 6.32, later in these notes, gives another.

Exercise 6.1 Let f : [a, b]→ R be given.

(a) Prove that if f is integrable on [a, b], then for any sequence ((Pn, Tn))∞n=1 of pointed
partitions for which wid(Pn)→ 0 as n→∞,

lim
n→∞

S(f ;Pn, Tn) =

∫ b

a

f(x) dx. (6.5)
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(Hence the integral can be evaluated by taking such a limit, if you know ahead of
time that f is integrable.)

(b) Assume that for every sequence ((Pn, Tn)) of pointed partitions for which wid(Pn)→
0 as n → ∞, limn→∞ S(f ;Pn, Tn) exists. Prove that f is integrable on [a, b], and
that for every such sequence ((Pn, Tn)), the equality (6.5) holds.

Proposition 6.9 (“Integrable implies bounded”) If f : [a, b] → R is Riemann in-
tegrable, then f is bounded.

Proof: Let f : [a, b] → R be a Riemann-integrable function, and let A =
∫ b
a
f . Let

δ > 0 be such that for each pointed partition (P, T ) of [a, b] of width less than δ,
|S(f ;P, T )− A| < 1; equivalently

A− 1 < S(f ;P, T ) < A+ 1 (6.6)

(such δ exists by the definition of integrability). Fix a partition P = {x0, . . . xN} of [a, b]
of width less than δ. Then (6.6) holds for every pointing T of P .

Assume that f is unbounded from above. Then f is unbounded from above on at
least one of the intervals Ij := [xj−1, xj], since there are only finitely many such intervals.
Let j0 ∈ {1, . . . , N} be such that f is unbounded from above on Ij0 . For each n ∈ N,
choose zn ∈ Ij0 such that f(zn) > n. For each j ∈ {1, . . . , N} with j 6= j0, fix any number

tj ∈ [xj−1, xj], let T (n) be the pointing {t(n)1 , . . . , t
(n)
N } of P for which t

(n)
j =

{
tj if j 6= j0,
zn if j = j0 ,

and let A′ =
∑

j 6=j0 f(tj)∆j. Then

S(f ;P, T (n)) = A′ + f(zn)∆j0 > A′ + n∆j0

For n sufficiently large, we have A′ + n∆j0 > A + 1, contradicting the second inequality
in (6.6). Hence f is bounded from above.

If f is unbounded from below, a similar argument shows that the first inequality in
(6.6) is contradicted. Hence f is bounded from below as well as from above, and is
therefore bounded.

An argument similar to the one preceding Definition 6.8 leads to a useful necessary
criterion for integrability:

Proposition 6.10 If f : [a, b] → R is Riemann integrable, then for every ε > 0 there
exists δ > 0 such that if (P, T ) and (Q, T ′) are pointed partitions of [a, b] of width less
than δ, we have |S(f ;P, T )− S(f ;Q, T ′)| < ε.
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We omit the proof here, since this proposition is part of a more powerul result we
will prove later (Theorem 6.32), and we want to get quickly to some simple examples of
integrable and non-integrable functions. In the latter case, we will use Proposition 6.10
in its contrapositive form: for any given f : [a, b] → R, if there exists ε0 > 0 such that,
for all δ > 0, there exist pointed pointed partitions (P, T ), (Q, T ′) of [a, b] of width less
than δ for which |S(f ;P, T )− S(f ;Q, T ′)| ≥ ε0, then f is not Riemann integrable.

Example 6.11 (an integrable function) For any c ∈ R, the constant function f :
[a, b]→ R given by f(x) = c is integrable, and∫ b

a

c dx = c(b− a).

This follows from the fact that, as the student may check, every Riemann sum for f
has the value c(b− a). N

In particular, R([a, b]) is nonempty!

Example 6.12 (a non-integrable function) Define f : [a, b] → R by f(x) = 1 if
x ∈ Q and f(x) = 0 if x /∈ Q. Let P = {x0, . . . , xN} be a partition of [a, b]. For 1 ≤ j ≤ N
choose tj, t

′
j ∈ [xj−1, xj] such that tj ∈ Q and t′j /∈ Q. Let T = {t1, . . . , tN}, T ′ =

{t′1, . . . , t′N}. Then the Riemann sums of f corresponding to the pointed partitions T, T ′

respectively are Then, the corresponding Riemann sum is

S(f ;P, T ) =
∑
j

f(tj)∆j =
∑
j

∆j = b− a

and
S(f ;P, T ′) =

∑
j

f(t′j)∆j =
∑
j

0 = 0.

Hence S(f ;P, T )− S(f ;P, T ′) = b− a. Since this is true regardless of how small wid(P )
is, it follows that f is not Riemann integrable. (In the contrapositive form of Proposition
6.10 that we stated above, take ε0 = b− a, take δ arbitrary, and take Q = P .) N

Definitions 6.6 and 6.8 are very intuitive, and, as we shall see later, generalize naturally
to the integration of vector-valued functions (functions [a, b]→ V , where V is a complete
normed vector space). However, these definitions can be unwieldy at times; it can be
a chore to show the integrability of functions that are any more complicated than the
constant function in Example 6.11. In the interests of efficiency, we postpone presenting
other examples until we have developed equivalent definitions that are (often) easier to
work with. For now, however, we introduce some notation that will allow us to rewrite
the definition of “

∫ b
a
f = A” more succinctly than in Definition 6.6:
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Notation 6.13 (a) Let P([a, b]) denote the set of partitions of [a, b], and, for each δ > 0,
let Pδ([a, b]) ⊂ P([a, b]) denote the set of partitions of [a, b] of width less than δ.

(b) For each function f : [a, b]→ R and each δ > 0, let

Sδ(f) =
⋃

P∈Pδ([a,b])

S(f ;P )

= {all Riemann sums of f associated to partitions of width less than δ}.

N

Remark 6.14 The definition of “
∫ b
a
f = A” can now be rewritten simply as: for each

ε > 0 there exists δ > 0 such that, for all S ∈ Sδ(f), we have |S − A| < ε. Even more

simply:
∫ b
a
f = A if (and only if) for each ε > 0 there exists δ > 0 such that Sδ(f) ⊂ Bε(A).

N

For simplicity, henceforth in these notes we will say simply that f is integrable
on [a, b] if f is Riemann integrable on [a, b], and refer to

∫ b
a
f as the integral of f

over [a, b]. The student is cautioned that there are more general types of integrability—in
particular, a type called Lebesgue integrability—and that usually when mathematicians
say to each other (or to graduate students) that a function on [a, b] is integrable, they
mean Lebesgue-integrable. The analog of Proposition 6.9 is false for Lebesgue-integrable
functions, and false even for functions for which we define an improper integral as in
Calculus 2. Indeed, the fact that no unbounded function is Riemann integrable is viewed
as a weakness of Riemann integration compared to Lebesgue integration. Nonetheless,
studying Lebesgue integration without first studying Riemann integration can interfere
with developing an intuitive understanding of any form of integration.

6.2 Linearity and order properties of the integral

Proposition 6.15 Let f, g : [a, b]→ R and c ∈ R be given. If both f and g are integrable,
then so are f + g and cf , and the following equalities hold:∫ b

a

(f + g) =

∫ b

a

f +

∫ b

a

g. (6.7)∫ b

a

cf = c

∫ b

a

f. (6.8)

Proof: From the definition (6.2), we easily see that, for any pointed partition (P, T ) of
[a, b], we have S(f + g;P, T ) = S(f ;P, T ) + S(g;P, T ) and S(cf ;P, T ) = cS(f ;P, T ).

9



Assume now that f and g are integrable, and let A =
∫ b
a
f, C =

∫ b
a
g. Let ε > 0 be

given, and let δ1, δ2 > 0 be such that Sδ1(f) ⊂ Bε(A) and Sδ2(g) ⊂ Bε(C). Then for any
pointed partition (P, T ) of [a, b] of width less than min{δ1, δ2}, we have

|S(f + g;P, T )− (A+ C)| = |(S(f ;P, T )− A) + (S(g;P, T )− C)|
≤ |S(f ;P, T )− A|+ |S(g;P, T )− C|
< 2ε.

It follows that f+g is integrable and that (6.7) holds. Similarly, for any pointed partition
(P, T ) of [a, b] of width less than δ1,

|S(cf ;P, T )− cA| = |cS(f ;P, T )− cA| = |c| |S(f ;P, T )− A| ≤ |c|ε,

from which the integrability of cf and the equality (6.8) follow.

Remark 6.16 The proof of Proposition 6.15 illustrated something that comes up in
innumerable proofs. As you may have learned in MAA 4211, in proofs we are quite often
in a situation of a form like the following: Statement 1 is true for all x ∈ (0, δ1) (or for
all n > N1), statement 1 is true for all x ∈ (0, δ2) (or for all n > N2), . . . , statement k
is true for all x ∈ (0, δk) (or for all n > Nk). We then say “Let δ = min{δ1, δ2, . . . , δk}”
(or “Let N = max{N1, . . . , Nk}”), and are then guaranteed that all k statements are true
for all x ∈ (0, δ) (or for all n ≥ N). As long as there are only finitely many statements
involved (typically there are only two), this device always works. Once the student has
had sufficient experience, he/she should not have trouble following proofs in which several
of these intermediate steps are omitted. For example, in the proof of Proposition 6.15,
we could have replaced the third and fourth sentences with, “Let ε > 0 be given, and let
δ > 0 be such that Sδ(f) ⊂ Bε(A) and Sδ(g) ⊂ Bε(C). Then for any pointed partition
(P, T ) of width less than δ, we have . . . .” By the end of MAA 4211, students should
definitely have had enough experience to be comfortable with such arguments (but should
always know how to justify them the “long way”). So, henceforth in these notes, we
will use this device to shorten arguments whenever we can.

Observe that, sinceR([a, b]) is nonempty, Proposition 6.15 can be phrased alternatively
as follows:

Proposition 6.17 (Linearity of the integral) The set R([a, b]) is a vector space, and

the map f 7→
∫ b
a
f is a linear map R([a, b])→ R.

The integration-map f 7→
∫ b
a
f also has the following “non-negativity” property:
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Proposition 6.18 Assume that f : [a, b] → R is integrable and that f(x) ≥ 0 for all

x ∈ [a, b]. Then
∫ b
a
f ≥ 0.

Exercise 6.2 Prove Proposition 6.18.

Corollary 6.19 (Order property of the integral) Assume that f, g : [a, b] → R are

integrable and that f(x) ≥ g(x) for all x ∈ [a, b]. Then
∫ b
a
f ≥

∫ b
a
g.

Proof: Let h = f − g. Then h ∈ R([a, b]) (by Proposition 6.17) and h(x) ≥ 0 for all
x ∈ [a, b]. Hence

0 ≤
∫ b

a

h =

∫ b

a

(f − g) =

∫ b

a

f −
∫ b

a

g,

and the result follows.

Remark 6.20 Note that Proposition 6.18 does not imply that if f is integrable over [a, b]

and f(x) > 0 for all x ∈ [a, b], then
∫ b
a
f > 0. A similar observation applies to Corollary

6.19. Changing a non-strict inequality to a strict one in hypotheses does not mean that
inequalities in conclusions become strict. (For example, given a convergent real-valued
sequence (an)∞n=1, it is true that if an ≥ 0 for all n then limn→∞ an ≥ 0, but it is not true
that if an > 0 for all n then limn→∞ an > 0.) We will see later (Remark 6.54 following
Exercise 6.6) that if f in Proposition 6.18 is assumed continuous, and f(x) > 0 for all

x ∈ [a, b], then indeed
∫ b
a
f > 0.

It is natural to ask whether pointwise-positivity of f does imply positivity of the
integral if we assume only that f is integrable, not that f is continuous. In these notes,
we will leave this question open. Students are invited to try either to prove that the
integral is positive under these hypotheses, or to find a counterexample in which the
hypotheses are met but

∫ b
a
f = 0. N

6.3 Upper and lower sums

Since unbounded functions are not (Riemann-)integrable (Proposition 6.9), we will sim-
plify some parts of the presentation below by restricting attention to bounded functions.

Notation 6.21 We will write B([a, b]) for the set of bounded real-valued functions on
[a, b]. N

Thus, Proposition 6.9 can be written succinctly as: R([a, b]) ⊂ B([a, b]).

11



Definition 6.22 For each function f : [a, b]→ R, P ∈ P([a, b]), and δ > 0, we define

U(f ;P ) = sup(S(f ;P ))

L(f ;P ) = inf(S(f ;P )),

Uδ(f) = sup(Sδ(f)),

Lδ(f) = inf(Sδ(f)).

The quantities U(f ;P ), L(f ;P ) are called, respectively, the upper and lower sums of f
with respect to P . N

Observe that, trivially, in the setting of Definition 6.22 we have

L(f ;P ) ≤ U(f ;P )

and Lδ(f) ≤ Uδ(f). (6.9)

Remark 6.23 Recall that, in general, the supremum of a nonempty set of real numbers
can be ∞, and the infimum can be −∞. A consequence of the upcoming Proposition
6.27 is that for f ∈ B([a, b]), the upper and lower sums of f with respect to any partition
are finite (i.e real numbers, never ±∞), and for any δ > 0 so are the numbers Uδ(f) and
Lδ(f). N

Lemma 6.24 Let {Xα : α ∈ A} be a collection of nonempty subsets Xα of R indexed by
a nonempty set A. Then

sup
(⋃
{Xα : α ∈ A}

)
= sup{sup(Xα) : α ∈ A}

and inf
(⋃
{Xα : α ∈ A}

)
= inf{inf(Xα) : α ∈ A}.

Exercise 6.3 Prove Lemma 6.24.

In the setting of Definition 6.22, applying Lemma 6.24 to the indexed collection
{S(f ;P ) : P ∈ Pδ([a, b])}, we have

Uδ(f) = sup{sup(S(f ;P )) : P ∈ Pδ([a, b])}
= sup{U(f ;P ) : P ∈ Pδ([a, b])}, (6.10)

and similarly

Lδ(f) = inf{L(f ;P ) : P ∈ Pδ([a, b])}. (6.11)

12



Example 6.25 Let f : [0, 1] → R be the squaring function: f(x) = x2. For each
positive integer N , let PN = {xj := j

N
: 0 ≤ j ≤ N}, a partition of [0, 1]. Consecutive

points of this partition are equally spaced: ∆j(PN) = 1
N

for each j ∈ {1, 2 . . . , N}.2 Let
T = {t1, . . . , tN} be a pointing of PN . Then

S(f ;PN , T ) =
N∑
j=1

t2j ∆j(PN) =
N∑
j=1

t2j
1

N
.

For the jth term in the sum, we have j−1
N

= xj−1 ≤ tj ≤ xj = j
N

, implying (j−1)2
N2 ≤ t2j ≤

j2

N2 .
Hence

N∑
j=1

(j − 1)2

N2

1

N
≤ S(f ;PN , T ) ≤

N∑
j=1

j2

N2

1

N
. (6.12)

Morever, if we take T to be the “right-endpoint pointing” of PN (i.e. tj = xj for
1 ≤ j ≤ N) then the value of S(f ;PN , T ) is exactly the rightmost sum in (6.12), while if
we take T to be the “left-endpoint pointing” of PN (i.e. tj = xj−1 for 1 ≤ j ≤ N) then
the value of S(f ;PN , T ) is exactly the leftmost sum in (6.12). Hence, using the fact that∑N

j=1 j
2 = N(N+1)(2N+1)

6
(which is easily proven by induction, and which you may have

learned in high school), it follows from (6.12) that

U(f ;PN) =
1

N3

N∑
j=1

j2 =
1

N3

N(N + 1)(2N + 1)

6

=
1

3
+

1

2N
+

1

6N2

and that

L(f ;PN) =
1

N3

N∑
j=1

(j − 1)2 =
1

N3

N−1∑
j=1

j2 =
1

N3

(N − 1)N(2N − 1)

6

=
1

3
− 1

2N
+

1

6N2
.

N

Remark 6.26 In Example 6.25, the fact that the supremum U(f ;PN) = sup(S(f ;PN))
and infimum L(f ;PN) = inf(S(f ;PN)) were achieved by, respectively, the right-endpoint
and left-endpoint pointings of PN , was a consequence of having chosen the function f in
this example to be monotone-increasing on the interval of interest, [0, 1]. In this example,
U(f ;PN) and L(f ;PN) turned out to be the maximal and minimal Riemann sums of f for

2A partition with equally-spaced points is sometimes called a regular partition.
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this partition. For a general function f : [a, b]→ R (bounded or otherwise), and partition
P (with or without equally-spaced points) the values U(f ;P ) and L(f ;P ) may not be
achieved by any pointings of P , let alone by the left-endpoint or right-endpoint pointings;
there be no maximal or minimal Riemann sums. Never forget that “sup” and “inf” are
more general concepts than “max” and “min”, and that you cannot replace “sup” by
“max” (or “inf” by “min”) unless you have shown that the supremum (or infimum) of
the set in question lies in that set. N

Proposition 6.27 Let f ∈ B([a, b] be given, and let M = sup{f(x) : x ∈ [a, b]} and
m = inf{f(x) : x ∈ [a, b]}. Then for each P ∈ P([a, b]) and S ∈ S(f ;P ), we have

m(b− a) ≤ S ≤M(b− a). (6.13)

Hence
S(f, P ) ⊂ [m(b− a),M(b− a)] (6.14)

and
m(b− a) ≤ L(f ;P ) ≤ U(f ;P ) ≤M(b− a). (6.15)

Consequently, for each δ > 0 and P ∈ Pδ([a, b]),

m(b− a) ≤ Lδ(f) ≤ L(f ;P ) ≤ U(f ;P ) ≤ Uδ(f) ≤ M(b− a). (6.16)

Proof: Let P ∈ P([a, b]) and let S ∈ S(f ;P ). Then S = S(f ;P, T ) for some pointing T of
P , so (6.13) follows from the Riemann-sum definition (6.2) and the fact that

∑
j ∆j = b−a.

The first and third inequalities in (6.15) follow immediately from (6.13) and the definitions
of L(f ;P ) and U(f ;P ), and the middle inequality is simply the trivially-true inequality
(6.9). The inequalities Lδ(f) ≤ L(f ;P ) and U(f ;P ) ≤ Uδ(f) in (6.16) follow from (6.11)
and (6.10), respectively, and the remaining inequalities follow from (6.15).

Proposition 6.28 Let f ∈ B([a, b]) be given. Define functions h1, h2 : (0,∞)→ R by

h1(δ) = Lδ(f)

and h2(δ) = Uδ(f).

Then h1 is monotone decreasing, h2 is monotone increasing, and both functions are
bounded.

Proof: For δ1, δ2 ∈ R with δ1 < δ2, every partition of width less than δ1 also has width
less than δ2. Hence Pδ1([a, b]) ⊂ Pδ2([a, b]), implying that Sδ1(f) ⊂ Sδ2(f). But for any
nonempty subsets A,B of R with A ⊂ B, we have inf(A) ≥ inf(B) and sup(A) ≤ sup(B).
Hence Lδ1(f) ≥ Lδ2(f) and Uδ1(f) ≤ Uδ2(f).
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This proves the asserted monotonicity. Boundedness follows from (6.16). (In the
notation of (6.16), the ranges of both h1 and h2 lie in [m(b− a),M(b− a)].)

We will soon be considering certain limits as δ → 0. Notice that for a decreasing
function h1 on (0,∞), the value h1(δ) increases as δ → 0; similarly, for an increasing
function h2 on (0,∞), the value h2(δ) decreases as δ → 0.

Lemma 6.29 Let I ⊂ R be an interval bounded from below, and let c be the left endpoint
of Ī (the closure of I); equivalently, let c = inf(I).

(i) If h : I \ {c} → R is an increasing function that is bounded from below, then

lim
u→c

h(u) = inf(range(h)). (6.17)

(ii) If h : I \ {c} → R is a decreasing function that is bounded from above, then

lim
u→c

h(u) = sup(range(h)). (6.18)

In particular, under the indicated hypotheses, the limits above exist.

Proof: Let u1 ∈ I \ {c} be such that h(u1) < α+ ε; such u1 exists since (by definition of
“inf”) α+ ε is not a lower bound of range(h). Let r = u1 − c; thus r > 0 and u1 = c+ r.
Then for all u with c < u < c + r we have α ≤ h(u) ≤ h(u1) < α + ε. Thus for all
u ∈ I \{c} for which |u− c| < r, we have |h(u)−α| = h(u)−α < ε. Since ε was arbitrary,
this establishes that limu→c h(u) = α.

This proves (i). Statement (ii) can be deduced by applying (i) to the function −h.

Corollary 6.30 Let f ∈ B([a, b]) be given. Then limδ→0 Lδ(f) and limδ→0 Uδ(f) both
exist, and

lim
δ→0

Lδ(f) ≤ lim
δ→0

Uδ(f). (6.19)

Proof: Let h1, h2 : (0,∞) → R be the functions defined in Proposition 6.28. By the
Proposition, each of these functions is monotone and bounded, so Lemma 6.29 implies
that the limits in (6.19) exist. Since both these limits exist, and Lδ(f) ≤ Uδ(f) for each
δ > 0, the inequality (6.19) follows.

Another general lemma that will be used shortly is the following:
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Lemma 6.31 Let X ⊂ R be a nonempty, bounded set. Let r > 0 and assume that for all
x1, x2 ∈ X we have |x1 − x2| ≤ r. Then sup(X)− inf(X) ≤ r.

Proof: Let ε > 0, and let x1, x2 ∈ X be such that x1 > sup(X)− ε and x2 < inf(X) + ε;
such x1, x2 exist since sup(X) and inf(X) are, respectively, the least upper bound and
greatest lower bound of X. Then sup(X) < x1 + ε and inf(X) > x2 − ε, so sup(X) −
inf(X) < x1 + ε − (x2 − ε) = x1 − x2 + 2ε ≤ r + 2ε. Since ε was arbitrary, the result
follows.

We can now recast integrability in terms of the limits in Corollary 6.30:

Theorem 6.32 For each f ∈ B([a, b]), the following are equivalent:

(i) f is integrable over [a, b].

(ii) limδ→0 Lδ(f) = limδ→0 Uδ(f).

(iii) limδ→0(Uδ(f)− Lδ(f)) = 0.

(iv) For every ε > 0 there exists δ > 0 such that for all S1, S2 ∈ Sδ(f), |S2 − S1| < ε.

In the integrable case, ∫ b

a

f = lim
δ→0

Lδ(f) = lim
δ→0

Uδ(f). (6.20)

Proof: Let f ∈ B([a, b]) be given, and recall from Remark 6.14 that the definition of

“
∫ b
a
f = A” can be rewritten as: for all ε > 0 there exists δ > 0 such that

Sδ(f) ⊂ (A − ε, A + ε). We will establish the equivalence of (i), (ii), (iii) by showing
that each of (i) and (iii) is equivalent to (ii).

(i) =⇒ (ii), plus last sentence of Proposition.

Assume that f is integrable over [a, b], and let A =
∫ b
a
f . Let ε > 0 be given, and let

δ > 0 be such that Sδ(f) ⊂ (A−ε, A+ε). Then the infimum Lδ(f) of Sδ(f) and supremum
Uδ(f) of Sδ(f) lie in [A − ε, A + ε], implying that |Lδ(f) − A| ≤ ε and |Uδ(f) − A| ≤ ε.
Since ε was arbitrary, it follows that limδ→0 Lδ(f) = A = limδ→0 Uδ(f). This implies both
statement (ii) and the last sentence of the Proposition.

(ii) ⇐⇒ (iii)

By Corollary 6.30, both limδ→0 Uδ(f) and limδ→0 Lδ(f) exist. Hence
limδ→0(Uδ(f)− Lδ(f)) = limδ→0 Uδ(f)− limδ→0 Lδ(f). The equivalence of (ii) and (iii) is
immediate from this equality.
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(ii) =⇒ both (i) and (iv)

Assume the equality in (ii) holds, and let A be the (common) value of the indicated
limits. Let ε > 0 be given. Let δ > 0 be such that |Lδ(f)− A| < ε and |Uδ(f)− A| < ε;
such δ exists since limδ→0 Lδ(f) = A = limδ→0 Uδ(f). Then for all S ∈ Sδ(f),

A− ε < Lδ(f) ≤ S ≤ Uδ(f) < A+ ε,

implying that Sδ(f) ⊂ (A− ε, A+ ε). Hence
∫ b
a
f = A, so (i) is true. Furthermore, for all

S1, S2 ∈ Sδ(f) we have |S2 − S1| < 2ε. Since ε was arbitrary, this establishes (iv).

(iv) =⇒ (iii)

Assume that (iv) holds. Let δ0 > 0 be such that for all S1, S2 ∈ Sδ0(f),
|S2 − S1| < ε. Then by Lemma 6.31, 0 ≤ Uδ0(f)− Lδ0(f) = sup(Sδ0(f))− inf(Sδ0(f) ≤ ε.
The monotonicities of the functions δ 7→ Lδ(f), δ 7→ Uδ(f) established in Proposition 6.28
imply that for all δ ∈ (0, δ0], we have

Lδ0(f) ≤ Lδ(f) ≤ Uδ(f) ≤ Uδ0(f).

Hence for all such δ, 0 ≤ Uδ(f)− Lδ(f) ≤ Uδ0(f)− Lδ0(f) ≤ ε. Since, by Corollary 6.30,
limδ→0 Uδ(f) and limδ→0 Lδ(f) both exist, so does limδ→0(Uδ(f)−Lδ(f)), and by the basic
order-property established in MAA 4211 for limits of real-valued functions,

0 ≤ lim
δ→0

(Uδ(f)− Lδ(f)) ≤ ε. (6.21)

Since ε was arbitrary, (6.21), this implies that limδ→0(Uδ(f)− Lδ(f)) = 0.

Remark 6.33 Since every Riemann-integrable function is bounded, the (previously un-
proven) Proposition 6.10 amounts to the “(i) =⇒ (iv)” implication in Theorem 6.32.
N

Remark 6.34 Statement (iv) in Theorem 6.32 can be thought of, loosely, as a “Cauchy
criterion for the convergence of Riemann sums” (with “convergence of Riemann sums”
interpreted heuristically, since the set of Riemann sums of a function f on [a, b] is not a
sequence). N

Remark 6.35 The equivalence of (i) and (iv) in Theorem 6.32 can be proven without any
use of upper and lower sums. We will give such a proof later, when we discuss integration
of vector-valued functions. N

The following characterization of upper and lower sums, worthwhile for its own sake,
simplifies our work when we apply Theorem 6.32 to compute integrals or prove integra-
bility.
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Proposition 6.36 Let f ∈ B([a, b]) be given, and let P = {x0, . . . , xN} be a partition of
[a, b]. For 1 ≤ j ≤ N , let

mj = inf{f(x) : xj−1 ≤ x ≤ xj} and Mj = sup{f(x) : xj−1 ≤ x ≤ xj}.

Then

L(f ;P ) =
N∑
j=1

mj∆j and U(f ;P ) =
N∑
j=1

Mj∆j . (6.22)

Proof: Since f(x) ≤Mj for all x ∈ [xj−1, xj], 1 ≤ j ≤ N , it is clear that for any pointing

T of P we have S(f ;P, T ) ≤
∑

jMj∆j, so
∑N

j=1Mj∆j is an upper bound for S(f ;P ).

Now let ε > 0 be given. For each j ∈ {1, 2, . . . , N}, let tj ∈ [xj−1, xj] be such that
f(tj) > Mj − ε

b−a ; such tj exists by the definition of Mj. Let T = {t1, . . . , tN}. Then T is
a pointing of P , and

S(f ;P, T ) =
N∑
j=1

f(tj)∆j >
∑
j

(
Mj −

ε

b− a

)
∆j =

(∑
j

Mj∆j

)
− ε

b− a
∑
j

∆j

=

(∑
j

Mj∆j

)
− ε.

Hence no number smaller than
∑

jMj∆j is an upper bound for S(f ;P ). Thus
∑

jMj∆j

is the least upper bound (= supremum) of S(f ;P ), yielding the second equality in (6.22).
A similar argument (left to the student) establishes the first equality.

Definition 6.37 Let A be a set and let B ⊂ A. The characteristic function3 of B (viewed
as a subset A) is the function χB : A→ R defined by

χB(p) =

{
1 if p ∈ B,
0 if p /∈ B.

N

For example, the function in Example 6.12 is simply the restriction of χQ to [a, b]
(regarding Q as a subset of R). The characteristic function of any interval (including a
one-point interval) is an example of a step function; see Definition 6.42.

The next example and our proof of the next proposition illustrate how Theorem 6.32
can be used.

3In some areas of mathematics, such as probability, characteristic functions are called indicator func-
tions, and the notation 1B is used instead of χB .
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Example 6.38 Fix c ∈ [a, b] and let f = χ{c} : [a, b] → R. Let δ > 0 and let P =
{x0, . . . xN}) be a partition of [a, b] of width less than δ. With notation as in Proposition
6.36, mj = 0 for every j, and Mj = 0 unless c ∈ [xj−1, xj]; the latter can happen for at
most two values of j. When nonzero, the value of Mj is 1. Hence, using (6.22), we have

0 = L(f ;P ) ≤ U(f ;P ) < 2δ.

Since this holds for all P ∈ Pδ([a, b]), it follows that

0 ≤ Lδ(f) ≤ Uδ(f) ≤ 2δ.

Using the Squeeze Theorem and Theorem 6.32, we conclude that∫ b

a

f = 0.

N

Proposition 6.39 Suppose that a ≤ c < d ≤ b. Then the characteristic function χ(c,d) :
[a, b]→ R is integrable, and ∫ b

a

χ(c,d) = d− c.

Proof: To streamline notation in this proof, let f = χ(c,d). We will show that
limδ→0 Lδ(f) = limδ→0 Uδ(f) = d − c. For this, it suffices to restrict attention to δ
less than any fixed, positive number; in particular, to δ < d− c.

Let δ ∈ (0, d − c) be given, let P = {x0, . . . , xN} be a partition of [a, b] of width less
than δ, and let j1, j2 be the unique indices in {1, . . . , N} such that c ∈ [xj1−1, xj1) and
d ∈ (xj2−1, xj2 ]. Then xj1−1 ≤ c < d ≤ xj2 , so j1 − 1 < j2; equivalently, j1 ≤ j2. If
j2 = j1 then δ > xj1 − xj1−1 = xj2 − xj1−1 > δ, a contradiction, so in fact we have j1 < j2;
equivalently, j1 ≤ j2 − 1. Hence c < xj1 ≤ xj2−1 < d, so xj lies in (c, d) if j1 ≤ j < j2.

For j ∈ {1, . . . , N}, let mj,Mj be as in Proposition 6.36; observe that each of these
numbers is either 0 or 1. Then for each j ∈ {1, . . . , N} we have the following:

If j < j1 or j > j2 then [xj−1, xj] ∩ (c, d) = ∅, so mj = Mj = 0.
If j1 < j < j2 then [xj−1, xj] ⊂ (c, d), so mj = Mj = 1.
If j = j1 or j = j2 then 0 ≤ mj ≤Mj ≤ 1.

(As will be seen, more precise information about the indices j1, j2 is unnecessary, so we
do not waste time on that.) Therefore, using (6.22),

U(f ;P ) ≤
j2∑
j=j1

∆j(P ) = xj2 − xj1−1 = (xj2 − d) + (d− c) + (c− xj1−1)

< (xj2 − xj2−1) + (d− c) + (xj1 − xj1)
< δ + (d− c) + δ

= d− c+ 2δ,
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and, since xj2−1 > xj2 − δ ≥ d− δ and xj1 < xj1−1 + δ ≤ c+ δ,

L(f ;P ) ≥
j2−1∑
j=j1+1

∆j = xj2−1 − xj1 ≥ (d− δ)− (c+ δ) = (d− c)− 2δ.

(For the case in which j1 + 1 > j2 − 1—which can happen only if j1 + 1 = j2, since
j1 < j2—recall that the notation “

∑n
j=m” means “the sum over all j satisfying m ≤ j ≤ n

if this index-set is nonempty, and 0 if this index-set is empty.”)

Since the above inequalities hold for all P ∈ Pδ([a, b]), it follows that

(d− c)− 2δ ≤ Lδ(f) ≤ Uδ(f) ≤ (d− c) + 2δ.

The result now follows from the Squeeze Theorem and Theorem 6.32.

Proposition 6.40 Let f, g : [a, b] → R. Assume that f is integrable and that g differs
from f at only finitely many points (i.e. that there are only finitely many x ∈ [a, b] for

which g(x) 6= f(x)). Then g is integrable, and
∫ b
a
g =

∫ b
a
f .

Proof: Let x1, . . . , xn be the values of x for which g(x) 6= f(x) (we may assume there is at
least one such value, since otherwise g = f and the conclusion is trivial). Let h = g − f .
Then h(x) = 0 for all x /∈ {x1, . . . , xn}, so h is a linear combination of the functions
χ{x1}, . . . , χ{xn}; specifically, h =

∑
i ciχ{xi} where ci = h(xi). By Proposition 6.17 and

Example 6.38, h is integrable and∫ b

a

h =
∑
i

ci

∫ b

a

χ{xi} =
∑
i

ci · 0 = 0.

But g = f + h, so g is the sum of two integrable functions. Using Proposition 6.17, the
conclusion follows.

Corollary 6.41 Let I ⊂ [a, b] be an interval, and let c ≤ d be the left and right endpoints,

respectively, of Ī. Then χI : [a, b]→ R is integrable and
∫ b
a
χI = d− c.

Corollary 6.41 follows easily from Proposition 6.39, Example 6.38, and “linearity of
the integral” (Proposition 6.17). This corollary is also a special case of the upcoming
Proposition 6.44 (and is proven essentially the same way), so we omit writing a separate
proof here.
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Definition 6.42 A function f : [a, b] → R is a step function if there exists a partition
{x0, . . . xN} of [a, b] such that for each j ∈ {1, . . . , N}, f is constant on the open interval
(xj−1, xj). N

Lemma 6.43 If f : [a, b] → R is a step-function, then f is a linear combination of
characteristic functions of intervals.

Proof: Let f : [a, b] → R be a step-function, let P = {x0, . . . xN} ∈ P([a, b]) be such
that for each j ∈ {1, . . . , N}, f |(xj−1,xj) is constant, and for each such j let cj denote the
(constant) value of f |(xj−1,xj). Then, as is easily verified,

f =
N∑
j=1

cjχ(xj−1,xj) +
N∑
j=0

f(xj)χ{xj}, (6.23)

a linear combination of characteristic functions of intervals.

Exercise 6.4 Prove the converse of Lemma 6.43. (Note that in the phrase “linear com-
bination of characteristic functions of intervals”, it is not given that the intervals do not
overlap.)

Proposition 6.44 Let f : [a, b] → R be a step-function, and let P,N and c1, . . . , cN be
as in Lemma 6.43. Then f is integrable and∫ b

a

f =
N∑
j=1

cj∆j(P ).

Proof: This follows from equation 6.23, Proposition 6.17, and Example 6.38.

Proposition 6.45 (“Step-function lemma”) A function f ∈ B([a, b]) is integrable if
and only if for each ε > 0, there exists a partition P of [a, b] such that

U(f ;P )− L(f ;P ) < ε. (6.24)

Remark 6.46 The strength of Proposition 6.45 is that there is no reference to the width
of the partition P . This makes the Proposition much simpler to apply than many of our
results up till now. N
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Proof of Proposition 6.45:

( =⇒ ) Assume that f is integrable. Then by Theorem 6.32, limδ→0(Uδ(f)−Lδ(f)) = 0.
Let ε > 0 be given, and let δ > 0 be such that Uδ(f)− Lδ(f) < ε; such δ exists since the
above limit is 0. Let P be any partition of width less than δ. Then, by (6.16), we have
U(f ;P )− L(f ;P ) ≤ Uδ(f)− Lδ(f) < ε.

(⇐=) Assume that for each ε > 0, there exists a partition P of [a, b] such that
U(f ;P )− L(f ;P ) < ε.

Let ε > 0 be given, and let P = {x0, . . . , xN} ∈ P([a, b]) be such that
U(f ;P ) − L(f ;P ) < ε. For 1 ≤ j ≤ N let Mj and mj be as in Proposition 6.36.
Let m = inf{f(x) : x ∈ [a, b]} and M = sup{f(x) : x ∈ [a, b]} Define functions
f1, f2 : [a, b]→ R by

f1 =
N∑
j=1

mjχ(xj−1,xj) +mχP =
N∑
j=1

mjχ(xj−1,xj) +
N∑
j=0

mχ{xj}

f2 =
N∑
j=1

Mjχ(xj−1,xj) +MχP =
N∑
j=1

Mjχ(xj−1,xj) +
N∑
j=0

Mχ{xj}.

Observe also that
f1(x) ≤ f(x) ≤ f2(x) (6.25)

for every x ∈ [a, b]. Furthermore, f1 and f2 are step functions, hence are integrable, and
from Proposition 6.44 we have∫ b

a

f1 =
N∑
j=1

mj∆j(P ) = L(f ;P ) (6.26)

and

∫ b

a

f2 =
N∑
j=1

Mj∆j(P ) = U(f ;P ). (6.27)

Let δ > 0 be such that

Sδ(f1) ⊂ (L(f ;P )− ε, L(f ;P ) + ε) (6.28)

and Sδ(f2) ⊂ (U(f ;P )− ε, U(f ;P ) + ε); (6.29)

such δ exists by (6.26)–(6.27) (see Remark 6.14). Let (Q, T ) be any pointed partition
of [a, b] of width less than δ. From (6.25) and the definition of “Riemann sum”, it is
immediate that S(f1;Q, T ) ≤ S(f ;Q, T ) ≤ S(f2;Q, T ). But S(f1;Q, T ) ∈ Sδ(f1) and
S(f2;Q, T ) ∈ Sδ(f2). Thus, using (6.28)–(6.29), we have

L(f ;P )− ε < S(f1;Q, T ) ≤ S(f ;Q, T ) ≤ S(f2;Q, T ) < U(f ;P ) + ε. (6.30)
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Now let S1, S2 ∈ Sδ(f). By (6.30), both S1 and S2 lie in the interval
(L(f ;P )− ε, U(f ;P ) + ε). Hence

|S2 − S1| ≤ (U(f ;P ) + ε)− (L(f ;P )− ε) = (U(f ;P )− L(f ;P )) + 2ε < 3ε

(using our initial hypothesis). Theorem 6.32 (specifically, the implication “(iii) =⇒ (i)”)
therefore implies that f is integrable.

Remark 6.47 Our proof shows that Proposition 6.45 is equivalent to the more easily
visualized statement: A function f ∈ B([a, b]) is integrable if and only if for each ε > 0,
there exist step-functions f1, f2 : [a, b] → R such that f1(x) ≤ f(x) ≤ f2(x) for all

x ∈ [a, b] (f is “squeezed” between f1 and f2) such that
∫ b
a
(f2 − f1) =

∫ b
a
f2 −

∫ b
a
f1 < ε.

N

Exercise 6.5 For any real-valued function f , the positive part of f , denoted f+, and
negative part of f , denoted f−, are defined by f+(x) = max{f(x), 0} and f−(x) =
−min{f(x), 0}. (Thus both f+ and f− are non-negative, and f = f+ − f− [why?].)

Parts (a) and (b) below can be done in either order: whichever part you do first, you
may use to help you do the other part quickly. (But, obviously, you may not resort to
circular reasoning.) To see how the result of (b) can be used to help with (a), compare
the function f+ with |f |+ f .

(a) Prove that if f is integrable on [a, b], then so are f+ and f−.

(b) Prove that if f is integrable on [a, b] then so is |f | (the function x 7→ |f(x)|), and∣∣∣∣∫ b

a

f

∣∣∣∣ ≤ ∫ b

a

|f |. (6.31)

6.4 Upper and lower integrals

This section is optional reading.

Definition 6.48 For any f : [a, b]→ R, we define the lower and upper Riemann integrals
of f over [a, b] to be

¯

∫ b

a

f = sup{L(f ;P ) : P ∈ P([a, b])},

¯∫ b

a

f = inf{U(f ;P ) : P ∈ P([a, b])},

respectively. We will frequently omit “Riemann” from this terminology, and may write the
lower and upper integrals using dummy-variable notation, e.g. “

∫̄ b
a
f(x) dx” for “

∫̄ b
a
f.”

N
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In words: the lower integral is the supremum of lower sums, while the the upper
integral is the infimum of upper sums

Now consider any fixed, arbitrary, f ∈ B([a, b]). Using Proposition 6.28 and Lemma
6.29, we can express the limits of Uδ(f) and Lδ(f) (as δ → 0) as follows:

lim
δ→0

Uδ(f) = inf
δ>0

(sup{U(f ;P ) : P ∈ Pδ([a, b])});

lim
δ→0

Lδ(f) = sup
δ>0

({inf{U(f ;P ) : P ∈ Pδ([a, b])}).

For each δ > 0 and P ∈ Pδ([a, b]), we have U(f ;P ) ≥ L(f ;P ). Hence, using Lemma 6.24,

inf
δ>0

(sup{U(f ;P ) : P ∈ Pδ([a, b])}) ≥ inf
δ>0

(inf{U(f ;P ) : P ∈ Pδ([a, b])})

= inf

(⋃
δ>0

{{U(f ;P ) : P ∈ Pδ([a, b])}

)
= inf{U(f ;P ) : P ∈ P([a, b]}

=
¯∫ b

a

f.

Thus

lim
δ→0

Uδ(f) ≥
¯∫ b

a

f, (6.32)

and similarly lim
δ→0

Lδ(f) ≤
¯

∫ b

a

f. (6.33)

We will show that the inequalities (6.32)–(6.33) can be sharpened to equalities when
f is integrable, but some preliminary work is needed first.

Definition 6.49 Let P and Q denote partitions of [a, b]. We say Q is a refinement of P ,
or that Q refines P , if P ⊂ Q. The common refinement of P and Q is P ∪Q. N

Lemma 6.50 Let f : [a, b]→ R be given.

(i) Let P and Q be partitions of [a, b], and assume that Q refines P . Then

L(f ;P ) ≤ L(f ;Q) ≤ U(f ;Q) ≤ U(f ;P ). (6.34)
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(ii) For any partitions P,Q of [a, b],

L(f ;P ) ≤ U(f ;Q). (6.35)

(iii) The upper and lower integrals satisfy

¯

∫ b

a

f(x) dx ≤
¯∫ b

a

f(x) dx. (6.36)

Sketch of proof. (i) The middle inequality in (6.34) is simply (6.9). The first and third
inequalities can be reduced to the case in which P = {a, b} and Q = {a, c, b}, where
the result is quickly established by comparing the Riemann sums associated with Q with
those associated with P .

(ii) Let P and Q be partitions of [a, b], and let R be their common refinement. Applying
(i) twice, we obtain

L(f ;P ) ≤ L(f ;R) ≤ U(f ;R) ≤ U(f ;Q).

Hence (6.35) holds.

(iii) For each partition Q, taking the supremum over all partitions P in (6.35) yields

¯

∫ b

a

f(x) dx ≤ U(f ;Q).

Taking the infimum over Q then yields (6.36).

Theorem 6.51 A bounded function f : [a, b]→ R is integrable if and only if

¯

∫ b

a

f =
¯∫ b

a

f. (6.37)

In the integrable case,

¯

∫ b

a

f =
¯∫ b

a

f =

∫ b

a

f. (6.38)

Proof: Let f ∈ B([a, b]).

First suppose that f is integrable. Then by Proposition 6.9, f is bounded, so our
analysis leading to (6.32)–(6.33) applies. These inequalities, together with (6.36), yield

lim
δ→0

Lδ(f) ≤
¯

∫ b

a

f ≤
¯∫ b

a

f ≤ lim
δ→0

Uδ(f). (6.39)
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But from Theorem 6.32, since f is integrable, the leftmost and rightmost expressions in
(6.39) are equal to each other and to

∫ b
a
f . Hence∫ b

a

f = lim
δ→0

Lδ(f) =

¯

∫ b

a

f =
¯∫ b

a

f = lim
δ→0

Uδ(f).

This proves that the upper and lower integrals are equal, and establishes (6.38).

Conversely, suppose that
∫̄ b
a
f =

∫̄ b
a
f, and let A denote the value of these quantities.

Let ε > 0 be given. Let P,Q be partitions of [a.b] such that L(f ;P ) > A − ε and
U(f ;Q) < A+ ε; such partitions exist by the definition of lower and upper integrals. Let
R be the common refinement of P and Q. Then, as in the proof of Lemma 6.50(ii), we
have L(f ;P ) ≤ L(f ;R) ≤ U(f ;R) ≤ U(f ;Q). Hence

A− ε < L(f ;R) ≤ U(f ;R) < A+ ε,

implying U(f ;R) − L(f ;R) < 2ε. Since ε was arbitrary, Proposition 6.45 then implies
that f is integrable.

Among the implications of Theorem 6.51 is that if f : [a, b] → R is integrable, then
the inequalities in (6.32) and (6.33) can be replaced by equalities. The student may
well wonder whether equality holds in (6.32) and (6.33) even without the assumption of
integrability. The answer is yes (this is one of several unrelated results each of which is
sometimes given the name “Darboux’s Theorem”), but the proof is not obvious, and we
do not give it in these notes. We refer the interested student to [10, Section 18.2,Theorem
VIII].

Remark 6.52 (Two approaches to the Riemann integral) Because Theorem 6.51
is true, equation (6.37) can be taken as the definition of “a bounded function f is (Rie-
mann) integrable on [a, b]”, in place of Definition 6.6, without changing either the set of
functions being called “integrable” or the values of their integrals. If we use (6.37) to
define what “integrable” means, then Theorem 6.51 yields the second sentence of Defini-
tion 6.6 as a theorem rather than a definition. Many (probably most) textbooks use this
alternate definition of integrability, often phrased without any mention of Riemann sums
(taking (6.22) to be the definition of L(f ;P ) and U(f ;P )). This approach has several
advantages—for example, the definition of integrability is much simpler (there is no ε or
δ; the width of a partition is never even mentioned), and many proofs can be done more
efficiently.

However, there are also disadvantages4 of using (6.37) instead of Definition 6.6 to
define integrability. The chief mathematical disadvantage of the approach based on (6.37)

4Most of the “disadvantages” referred to here are pedagogical in nature, so should properly be called
“disadvantages in the opinion of the author of these notes”, but repeating such a mouthful in place
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is that the generalization to integrals of vector-valued functions is less natural (especially
for functions taking values in an infinite-dimensional vector space). The other potential
disadvantages are primarily pedagogical. One is that unless a proof of Theorem 6.51
is provided, the notion of “

∫ b
a
f(x) dx” in this approach does not clearly reduce to the

notion that students learn in Calculus 1 (and again in Calculus 3, generalized to definite
integrals of functions of two or three variables)—a notion that is completely correct, but
that is usually not given a precise statement in Calculus 1-2-3 because students are not
yet equipped to understand or appreciate the precise statement. Definition 6.6 is exactly
the Calculus 1-2-3 notion of integrability, just defined precisely. It is this notion, rather
than equation (6.37), on which all quantities defined through integrals in physics and other
sciences are based.5 Without Theorem 6.51, it is not clear that the “upper integral = lower
integral” definition of integrability leads to the same notions of integration, or values of
integrals, conceptualized in Calculus 1 (whether or not (6.22) is used to define upper and
lower sums). Thus, some mathematicians find presentations of the Riemann integral that
take (6.37) as definition, but do not include a proof of Theorem 6.51 (e.g. the presentation
in [7]), to be unsatisfying. But when presentations that take (6.37) as definition do include
a proof of Theorem 6.51 (as in [6, Theorem 6.14] and [10, Section 18.2]), some of the
efficiency initially gained from the upper-integral/lower-integral definition is lost.

When (6.22) is used to define upper and lower sums, in addition to using (6.37)
to define integrability, there is another efficiency-gain (the need to prove Proposition
6.36 is avoided), but offsetting are additional pedagogical disadvantages. One is that
all connection to Riemann sums has been removed (unless prominent mention is made
elsewhere in the presentation), putting even more distance between the integral defined
this way and the integral as conceptualized in Calculus 1-2-3 and in the sciences. Another
is that, using (6.22), we cannot even define upper and lower sums (and therefore upper
and lower integrals), even within the extended reals, without restricting attention to
functions that are at least semi-bounded: bounded above or bounded below. (In contrast,
upper and lower sums as defined in Definition 6.22 always exist in the extended reals; no
boundedness assumptions are needed.) Usually, to simplify presentations based on (6.22)
and (6.37), a restriction is made to functions that are bounded, not just semi-bounded.
Thus one loses Proposition 6.9. Instead of the non-integrability of unbounded functions
being a consequence of the concept of the Riemann integral, unbounded functions are
simply removed from consideration from the start (and students may reasonably wonder,

of “disadvantages” everywhere would have made this discussion hard to read. The judgment of what
is pedagogically better or worse is highly subjective. Every instructor is forced to make pedagogical
choices, some aspect of which would be deemed disadvantageous by instructors making different choices.
No criticism is intended of anyone whose pedagogical choices are different from those of the author of
these notes.

5It is exactly these quantities in physics, including vector-valued integrals, for which the notion of
“integral” was originally developed; calculus was invented in order to provide a mathematical description
of physical laws. Examples of quantities in physics that, to this day, are understood by starting with
Riemann sums, include work, centers of mass, moments of inertia, hydrostatic force, all line integrals in
electricity and magnetism (E&M), and all flux integrals in E&M and in fluid dynamics.
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“Why?”). Thus one of the chief deficiencies of the Riemann integral (as compared with
the Lebesgue integral) cannot be demonstrated; it’s been defined away. N

6.5 The integrability of continuous functions

Theorem 6.53 (Continuous functions are integrable) If f : [a, b] → R is continu-
ous, then f is integrable on [a, b].

Proof: Let f : [a, b]→ R be a continuous function. Since [a, b] is compact, f is bounded.
Therefore, by Proposition 6.45, to prove that f is integrable it suffices to show that for
each ε > 0, there exists a partition P of [a, b] such that U(f ;P )− L(f ;P ) < ε.

Let ε > 0 be given. Recall from MAA 4211 that every continuous function on a
compact space is uniformly continuous. Since [a, b] is compact and f is continuous, it
follows that f is uniformly continuous. Let δ > 0 be such that if x, y ∈ [a, b] and
|x− y| < δ, then |f(x)− f(y)| < ε/(b− a); such δ exists since f is uniformly continuous.
Let P = {x0, . . . , xN} ∈ Pδ([a, b]); such P exists by Remark 6.5.

Recall also from MAA 4211 that every continuous real-valued function on a compact
space attains a maximum value and a minimum value. In particular, this applies to
f |[xj−1,xj ] for each j ∈ {1, . . . , N}. For each such j let mj,Mj denote, respectively, the
minimum and maximum values of f |[xj−1,xj ], and let x′j, x

′′
j ∈ [xj−1, xj] be such that f(x′j) =

mj and f(x′′j ) = Mj. Then, for each j ∈ {1, . . . , N}, we have |x′j − x′′j | ≤ wid(P ) < δ, so

Mj −mj = f(x′′j )− f(x′j) <
ε

b− a
.

But by Proposition 6.36, L(f ;P ) =
∑

jmj∆j and U(f ;P ) =
∑

jMj∆j (where ∆j =
∆j(P )). Hence

U(f ;P )− L(f ;P ) =
∑
j

(Mj −mj)∆j <
∑
j

ε

b− a
∆j =

ε

b− a
∑
j

∆j = ε.

Since ε was arbitrary, we conclude from Proposition 6.45 that f is integrable.

Exercise 6.6 (a) Assume that f : [a, b]→ R is continuous, that f(x) ≥ 0 for all x ∈ [a, b],

and that f(x) > 0 for some x ∈ [a, b]. Prove that
∫ b
a
f > 0.

(b) Assume that f, g : [a, b] → R are continuous, that f(x) ≥ g(x) for all x ∈ [a, b],

and that f(x) > g(x) for some x ∈ [a, b]. As a corollary of part (a), prove that
∫ b
a
f >

∫ b
a
g.

Remark 6.54 In particular, if f : [a, b]→ R is continuous and f(x) > 0 for all x ∈ [a, b],

then
∫ b
a
f > 0. (See Remark 6.20.) N
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6.6 Additivity of the integral

The Riemann integral has an additivity property (unrelated to linearity) expressed by the
following proposition.

Proposition 6.55 (Additivity of the integral) Suppose a < c < b. A function f :
[a, b] → R is integrable on [a, b] if and only if it is integrable on both [a, c] and [c, b]. In
the integrable case, ∫ b

a

f =

∫ c

a

f +

∫ b

c

f. (6.40)

Remark 6.56 As mentioned in Section 6.0, equation (6.40) reflects the principle that
“integration is about adding stuff up”: the “amount of stuff” between a and b is the
“amount of stuff” between a and c plus the “amount of stuff” between c and b.

Proof of Proposition 6.55: Let f1 = f |[a,c] and f2 = f |[c,b].
First suppose that f1 and f2 are integrable, and let A and C, respectively, denote their

integrals. Since f1 and f2 are integrable, they are bounded; hence so is f . Let M > 0 be
such that |f(x)| ≤M for all x ∈ [a, b].

Let ε > 0. Let δ0 > 0 be such Sδ0(f1) ⊂ Bε(A) and Sδ0(f2) ⊂ Bε(C); such δ0 exists
by the assumed integrability of f1 and f2. Let δ = min{δ0, ε

4M
}. Then Sδ(f1) ⊂ Sε(f1) ⊂

Bε(A) and Sδ(f2) ⊂ Sε(f2) ⊂ Bε(C) (since δ ≤ δ0) and 4Mδ ≤ ε, facts we will use later.

Let (P, T ) = ({x0, . . . , xN}, {t1, . . . , tN}) be a pointed partition of [a, b] of width less
than δ. Define

j′ = max{j ∈ {1, . . . , N} : xj < c}, (6.41)

j′′ = min{j ∈ {1, . . . , N} : xj > c} (6.42)

(thus the value of j′′ − j′ is either 2 or 1, accordingly as c is or is not an element of P ).
Define partitions P ′, P ′′ of [a, c], [c, b], respectively, by

P ′ = (P ∩ [a, c]) ∪ {c} = {x0, . . . , xj′ , c}, (6.43)

P ′′ = {c} ∪ (P ∩ [c, b]) = {c, xj′′ , . . . , xN}; (6.44)

observe that wid(P ′) and wid(P ′′) are at most wid(P ), hence are less than δ. Define
pointings T ′, T ′′ of P ′, P ′′, respectively, by

T ′ = {t1, . . . , tj′ , c},
T ′′ = {c, tj′′ , . . . , tN}.

For j ≤ j′ and for j > j′′, the jth term in the sum defining S(f ;P, T ) is a term in either
the sum defining S(f1;P

′, T ′) or the sum defining S(f2;P
′′, T ′′) (but not both). Similarly,
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every term except possibly the last (respectively, first) in the sum defining S(f1;P
′, T ′)

(resp., S(f2;P
′′, T ′′)) is a term in the sum defining S(f ;P, T ). Hence

S(f ;P, T )− (S(f1;P
′, T ′) + S(f2;P

′′, T ′′))

=


f(tj′′)(xj′′ − xj′)− f(c)(c− xj′)− f(c)(xj′′ − c)

= (f(tj′′)− f(c))(xj′′ − xj′),
if c /∈ P

(f(tj′+1)− f(c))(c− xj′) + (f(tj′′)− f(c))(xj′′ − c) if c ∈ P.

(6.45)

The numbers (c − xj′) and (xj′′ − c) lie in the interval (0, δ), as does (xj′′ − xj′) in the
“c /∈ P” case above. Since |f(x) − f(y)| ≤ |f(x)| + |f(y)| ≤ M for all x, y ∈ [a, b], and
2M < 4M , the triangle inequality then shows that whichever line of (6.45) applies, we
have

|S(f ;P, T )− (S(f1;P
′, T ′) + S(f2;P

′′, T ′′))| ≤ 4Mδ.

By the triangle inequality and the definition of δ, this implies that

|S(f ;P, T )− (A+ C)| ≤ |S(f ;P, T )− (S(f1;P
′, T ′) + S(f2;P

′′, T ′′))|
+ |S(f1;P, T )− A|+ |S(f2;P, T )− C|

< 4Mδ + 2ε

≤ 3ε. (6.46)

Since (P, T ) was an arbitrary pointed partition of width less than δ, the inequality
(6.46) shows that Sδ(f) ⊂ B3ε(A + C). Since ε was arbitrary, this establishes that f is

integrable and that
∫ b
a
f = A+ C, as desired.

Conversely, suppose that f is integrable on [a, b]. Then f is bounded. Let ε > 0. Let P
be a partition of [a, b] such that U(f ;P )−L(f ;P ) < ε; such P exists by Proposition 6.45.
Define indices j′, j′′ and partitions P ′, P ′′ (of [a, c] and [c, b], respectively) just as in (6.41)–
(6.42) and (6.43)–(6.44). For each j ∈ {1, . . . , N}, define mj and Mj as in Proposition
6.36. Let M ′ = sup(f([xj′ , c])) and m′ = inf(f([xj′ , c]); since [xj′ , c] ⊂ [xj′ , xj′+1] we have
M ′ ≤Mj′+1 and m′ ≥ mj′+1. Then, applying Proposition 6.36,
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U(f1;P
′)− L(f1;P

′) =

j′∑
j=1

(Mj −mj)∆j(P ) + (M ′ −m′)(c− xj′)

≤
j′∑
j=1

(Mj −mj)∆j(P ) + (Mj′+1 −mj′+1)(xj′+1 − xj′)

=

j′+1∑
j=1

(Mj −mj)∆j(P )

≤
N∑
j=1

(Mj −mj)∆j(P )

= U(f ;P )− L(f ;P )

< ε.

Similarly, U(f2;P
′′)− L(f2, P

′′) < ε. Since ε was arbitrary, Proposition 6.45 implies that
f1 and f2 are integrable.

Corollary 6.57 Let f : [a, b]→ R.

(a) The function f is integrable if and only if its restriction to each closed subinterval
of [a, b] is integrable.

(b) Suppose f is integrable, n is a positive integer, and a < c1 < c2 · · · < cn < b. Then∫ b

a

f =

∫ c1

a

f +

∫ c2

c1

f + · · ·+
∫ b

cn

f.

Exercise 6.7 Prove Corollary 6.57.

Definition 6.58 Let a, b ∈ R, with a ≤ b, and let f be a real-valued function on [a, b].

(i) We define
∫ a
a
f = 0, and say that this integral exists.

(ii) If b > a, we say that
∫ a
b
f exists if and only if

∫ b
a
f exists, in which case we define∫ a

b
f = −

∫ b
a
f .

N
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Corollary 6.59 Let a, b ∈ R (with the possibilities a < b, a = b, a > b all allowed).

(i) Let c ∈ R. Then
∫ b
a
c = c(b− a).

(ii) Suppose that f is integrable on the closed interval with endpoints a and b, and that
|f(x)| ≤M for every x in this interval. Then∣∣∣∣∫ b

a

f

∣∣∣∣ ≤M |b− a|. (6.47)

Proof: In view of Definition 6.58, it suffices to establish (i) and (ii) in the case a < b,
so let us assume a < b. Then (i) follows from Example 6.11. For (ii), note that every
Riemann sum of f over [a, b] lies in the interval [−M(b− a),M(b− a)]. The definition of∫ b
a
f then implies that

∫ b
a
f also lies in this interval. Therefore (6.47) holds.

Note that in Proposition 6.55, if both integrals on the right-hand side of equation
(6.40) exist, then so does the integral on the left-hand side, while if the integral on the
left-hand side exists, so do both of the integrals on the right-hand side. Hence if any two
of the three integrals written in equation (6.40) exist, so does the third, and the equation
holds true. Observe also that equation (6.40) can be rewritten as∫ b

c

f =

∫ b

a

f −
∫ c

a

f,

which, using Definition 6.58, can be further rewritten as∫ b

c

f =

∫ a

c

f +

∫ b

a

f, (6.48)

which differs from (6.40) only by a permutation of the letters a, b, c. Furthermore,
∫ a
c
f

exists if and only if
∫ c
a
f exists, so two of the three integrals in (6.40) exist if and only if

two of the three integrals in (6.48) exist. However, if a < c < b, then in (6.48) we do not
have c < a < b; equation (6.48) holds even though the limits of integration do not have
the same order-relation as in Proposition 6.55. Pushing these ideas a little further leads
to the following:

Corollary 6.60 Let a, b, c ∈ R and let f be a real-valued function defined on an interval
that includes a, b, and c. (No ordering or distinctness of a, b, c is assumed.) Then if any

two of the three integrals
∫ c
a
f,
∫ b
a
f,
∫ c
b
f exists, so does the third, and∫ c

a

f =

∫ b

a

f +

∫ c

b

f ; (6.49)

equivalently, ∫ c

a

f −
∫ c

b

f =

∫ b

a

f. (6.50)
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Exercise 6.8 Prove Corollary 6.60. (Do not forget to handle the cases in which two or
three of the numbers a, b, c are equal.)

6.7 The Fundamental Theorem of Calculus

There are essentially two different, but closely-related, theorems that go by the name “The
Fundamental Theorem of Calculus”6 (or, more historically, “The Fundamental Theorem of
Integral Calculus”; this longer name is more descriptive but is rarely used anymore). One
of these involves the integral of a derivative, and the other the derivative of an integral.
More precisely, this is the primary distinction between the conclusions of these theorems.
For each of these types of conclusions, there are actually more than one theorem, differing
in their hypotheses. Of the various theorems that go by the name “The Fundamental
Theorem of Calculus”, we will prove the two that are of the greatest use in calculus, and
refer to each of these two as “part of the Fundamental Theorem of Calculus”.7 Later, in
optional reading for the student, we discuss some of the other, related, theorems called The
Fundamental Theorem of Calculus, and discuss the nomenclature for all these theorems.

The following simple lemma is needed for the statement of the first theorem we will
prove.

Lemma 6.61 Let U ⊂ R be an open interval, f : U → R a continuous function, and
a, b ∈ U . Then

∫ b
a
f exists.

Proof: If a = b then, by definition, the integral exists and is 0. If a 6= b then the
restriction of f to [min{a, b},max{a, b}] is continuous, so by Theorem 6.53, the integral
of f over this interval exists. If a < b we are done; if a > b the result follows from
Definition 6.58.

This lemma assures us that the function F in the theorem below is indeed well-defined.

Theorem 6.62 (“part of” the Fundamental Theorem of Calculus) Let f be a con-
tinuous real-valued function on an open interval U ⊂ R, and let a ∈ U . Define F : U → R
by

F (x) =

∫ x

a

f(t) dt.

6Since there is more than one theorem called “The Fundamental Theorem of Calculus”, it is tempting
to refer to these theorems collectively as “The Fundamental Theorems of Calculus”. We choose not do
so in these notes, however, since that terminology can give the impression that this group of theorems
contains all the theorems that are fundamental to calculus, when in fact “The Fundamental Theorem of
Calculus” is simply a historical name for one theorem and its relatives.

7 Needless to say, we could state a single theorem that has each of these two theorems as a part,
but the only motivation would be that the two theorems share a name. Combining them into a single
theorem, each part of which has its own hypotheses, would be rather artificial, and would be inconvenient
for the proofs.
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Then F is differentiable and F ′ = f .

Proof: Fix x0 ∈ U , and let x ∈ U . Corollary 6.59(i) implies that
∫ x
x0
f(x0) dt =

f(x0)(x− x0) (here we are integrating the constant function t 7→ f(x0)). Using Corollary
6.60 in the form (6.50), we also have F (x)− F (x0) =

∫ x
x0
f(t)dt. Hence

F (x)− F (x0)− f(x0)(x− x0) =

∫ x

x0

f(t) dt−
∫ x

x0

f(x0) dt =

∫ x

x0

(f(t)− f(x0)) dt.

Therefore for all x ∈ U with x 6= x0, we have

∣∣∣∣F (x)− F (x0)

x− x0
− f(x0)

∣∣∣∣ =

∣∣∣∣F (x)− F (x0)− f(x0)(x− x0)
x− x0

∣∣∣∣ =

∣∣∣∫ xx0 (f(t)− f(x0)) dt
∣∣∣

|x− x0|
.

(6.51)

Now let ε > 0 be given, and let δ > 0 be such that for all x ∈ U with |x − x0| < δ
we have |f(x) − f(x0)| < ε; such δ exists since f is continuous at x0. Then for all
x ∈ Bδ(x0) \ {x0}, (6.51) and Corollary 6.59(ii) imply that∣∣∣∣F (x)− F (x0)

x− x0
− f(x0)

∣∣∣∣ ≤ ε|x− x0|
|x− x0|

= ε.

Hence limx→x0
F (x)−F (x0)

x−x0 = f(x0). Thus F is differentiable at x0, and F ′(x0) = f(x0).

Since x0 was arbitrary, we are done.

An antiderivative of a function f on an open set U is a differentiable function F such
that F ′ = f . An immediate corollary of Theorem 6.62 is:

Corollary 6.63 Every continuous function f on an open interval has an antiderivative
on that interval.

Proof: Fix any a ∈ U . Then the function x 7→
∫ x
a
f(t) dt is an antiderivative of f on U .

Theorem 6.64 (The Fundamental Theorem of Calculus) Let U ⊂ R be an open
interval, let f : U → R be a continuous function, and let F be an antiderivative of f on
U . Then for all a, b ∈ U , ∫ b

a

f(t)dt = F (b)− F (a). (6.52)

Observe that Theorem 6.64 can be stated equivalently as follows:
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Theorem 6.65 (The Fundamental Theorem of Calculus) Let U ⊂ R be an open
interval, and let F : U → R be a differentiable function whose derivative F ′ is continuous.
Then for all a, b ∈ U , ∫ b

a

F ′(t) dt = F (b)− F (a). (6.53)

Proof of Theorem 6.64: Fix a ∈ U , and define G : U → R by G(x) =
∫ x
a
f(t) dt. By

Theorem 6.62, G′ = f . But by hypothesis, F ′ = f . Recall the following consequence
of the Mean Value Theorem: If two differentiable functions H1, H2 on an open interval
have identical derivatives, then H2 − H1 is constant (on that interval). Hence G − F is
constant. Therefore for all x ∈ U ,

G(x)− F (x) = G(a)− F (a) = 0− F (a) = −F (a),

so G(x) = F (x)− F (a). Thus for any b ∈ U ,
∫ b
a
f(t) dt = G(b) = F (b)− F (a).

Remark 6.66 The careful reader will have noticed that Theorem 6.62 is not, in fact,
part of Theorem 6.64. For an explanation of the this apparently illogical terminology, see
Remark 6.72 (optional reading).

Remark 6.67 Theorem 6.64 (and even a stronger version) can be proven without the
use of Theorem 6.62; the earlier theorem simply affords us a proof of Theorem 6.64 than
is shorter than other proofs. See Theorem 6.70 and Exercise 6.10 later. N

Exercise 6.9 Evaluate limn→∞
1
n

[(
1
n

)6
+
(
2
n

)6
+
(
3
n

)6
+ · · ·+

(
n
n

)6]
.

Problems like the exercise above were common in high-school math-team competitions
when the writer of these notes was in high school. Usually, students were given 2 minutes
or so to solve such a problem. The trick is to recognize the sequence whose limit is being
taken as a sequence of Riemann sums for an appropriate function over an appropriate
interval, then use Exercise 6.1 and the Fundamental Theorem of Calculus.

Remark 6.68 “True” integration refers to what we call the “definite integral” in Cal-
culus 1; it’s about adding stuff up. This is true whether we are talking about the Rie-
mann integral, a generalization called the Riemann-Stieltjes integral, improper integrals,
or the Lebesgue integral. Nothing in the concept of integration involves differentiation.
Archimedes already had this concept of integration as “adding up stuff” nearly two mil-
lennia before derivatives and integrals were defined, when he realized that the area inside
a circle could be computed as the limit as n→∞ of the area of an inscribed regular n-gon.
The Fundamental Theorem of Calculus (FTC) relates two completely distinct concepts:
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integration and antidifferentiation. Because we are able to compute antiderivatives of so
many familiar functions, the FTC is a key tool in the computation of (definite) integrals.

It is because of the Fundamental Theorem of Calculus that antiderivatives are also
called by a name, “indefinite integrals”, that involves the word “integral”. If you learned
indefinite integration before definite integration, you may have received the false impres-
sion that “integration” always means “antidifferentiation”. In this case, when learning
about the Riemann-sum definition of the integral (either in Calculus 1 or in Advanced
Calculus), you may have wondered, “What does this have to do with integration?” But
you should now realize that this is the wrong question. Once you understand what inte-
gration actually means, but before you learn the FTC, the right question is “What does
antidifferentiation have to do with integration?” This question is answered by the FTC.
The FTC is the reason that antiderivatives are also called (indefinite) integrals.

If you learned indefinite integration before definite integration, another question you
may have asked yourself is, “Where does this symbol ‘

∫
’ ” come from?” It comes from

definite integration. The history of the symbol is that “
∫

” is an elongated S, the “S”
standing for “sum”. The reason that the same symbol is used for antiderivatives is, again,
the FTC. N

Remark 6.69 Observe that the last statement of Theorem 6.62 can be written as

d

dx

∫ x

a

f(t) dt = f(x), (6.54)

a statement about “the derivative of an integral” (more precisely, the derivative of a
function defined by an integral in the specific way above), whereas (6.53) is a state-
ment about the integral of a derivative. Although (6.53) and (6.54) look different, they
are actually equivalent once we know Corollary 6.63. By simply changing notation, we
can rewrite (6.53) as

∫ x
a
F ′(t) dt = F (x) − F (a). Since F in this equation is assumed

differentiable, and F (a) is just a constant, the right-hand side of this equation is dif-
ferentiable in x; hence so is the left-hand side. Thus, given (6.53), we deduce that
d
dx

∫ x
a
F ′(t) dt = d

dx
(F (x) − F (a)) = F ′(x). Since (from Corollary 6.63) every continu-

ous real-valued function on an open interval has an antiderivative, there is no loss of
generality if we replace F ′ (which was assumed continuous when we wrote (6.53)) in this
last equation by an arbitrary continuous function f . But this yields (6.54).

Conversely, our proof of Theorem 6.64 shows that (6.54) implies (6.52), hence also im-
plies (6.53). This equivalence is the reason that both Theorem 6.64 and Theorem 6.62 are
often referred to by the same name, “The Fundamental Theorem of Calculus.” However,
as written, Theorem 6.62 is a stronger theorem than Theorem 6.64, since it implies that
every continuous real-valued function on an open interval has an antiderivative, which
cannot be deduced from Theorem 6.64. N
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The remainder of this section is optional reading. (However, if you’re wondering
why Theorems 6.62 and Theorem 6.64 were given their names in these notes, the answer
is contained in Remark 6.72.)

In Theorem 6.65, we assumed that the integrand F ′ was continuous. This hypothesis
can be weakened to the assumption that F ′ is merely integrable over the appropriate
interval, thereby obtaining the following stronger theorem (which can also reasonably be
called “the Fundamental Theorem of Calculus”):

Theorem 6.70 Let U ⊂ R be an open interval, let a, b ∈ U , and let F : U → R be a
differentiable function whose derivative F ′ is integrable over the interval with endpoints a
and b. Then equation (6.53) holds.

Exercise 6.10 (Optional.) Prove Theorem 6.70. Hint: It suffices to prove the result in
the case a < b (why?). Assume a < b. For any partition P = {x0, . . . , xN} of [a, b], observe
that F (b)−F (a) =

∑N
j=1(F (xj)−F (xj−1)). Apply the Mean Value Theorem to F on each

interval [xj−1, xj], deduce that (for any partition P ), L(f ;P ) ≤ F (b) − F (a) ≤ U(f ;P ).
Now apply an appropriate result that we proved earlier.

Theorem 6.62 can also be strengthened:

Theorem 6.71 If f ∈ R([b, c]), and a ∈ [b, c], then the function F : [b, c] → R defined
by

F (x) =

∫ x

a

f(t) dt

is continuous. If, in addition, f is continuous at x0 ∈ (b, c), then F is differentiable at
x0, and F ′(x0) = f(x0).

Observe that the proof we gave of Theorem 6.62 actually proves the second assertion
in Theorem 6.71; we simply replace the arbitrary point x0 in that proof by the specific
point x0 in the statement of Theorem 6.71. What is new in Theorem 6.71 is really the
first assertion: that if we assume only that f is integrable (rather than continuous) on a
closed, bounded interval containing a, we can still deduce something about the function
F , namely that it is continuous.

Exercise 6.11 Prove the first assertion in Theorem 6.71.

Most textbooks on introductory or advanced calculus state only Theorems 6.64 and
6.62; usually Theorems 6.70 and 6.71 are stated only in more advanced textbooks on
analysis.
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Remark 6.72 (Naming the theorems in this section) For purposes of this Remark,
minor differences in the statements of the theorems under discussion are ignored.

If you ask different mathematicians (or even the same mathematician at different
times), “What is the Fundamental Theorem of Calculus?” you will get different answers.
The answer may also depend on the level of who’s asking the question. In some textbooks,
Theorem 6.64 is called the Fundamental Theorem of Calculus (FTC) or the Fundamental
Theorem of Integral Calculus (FTIC), and Theorem 6.62 is stated but not given a name
(e.g. [8, 11]). In other textbooks, exactly the opposite is true: Theorem 6.62 is called the
FTC, and Theorem 6.64 is stated but not given a name (e.g. [5]).

This is not where the name-discrepancies end. The first edition of Apostol’s analysis
textbook [2] calls Theorem 6.64 the FTIC, and states and proves a generalized version8

of Theorem 6.71, but does not give a name to the latter theorem. The second edition
of Apostol’s analysis textbook, [3], calls Theorem 6.64 the Second FTIC. In this edition,
Apostol stil does not give his version of Theorem 6.71 a name, but says afterwards that
part (iii) of this theorem—the only part that gives a relation between integration and
differentiation—is “sometimes called the first FTIC” in the special case of the pure Rie-
mann integral. Apostol’s calculus textbook [1] calls Theorem 6.62 the First FTC, and
Theorem 6.64 the Second FTC. Some textbooks implicitly (but never explicitly) combine
Theorems 6.62 and 6.64 into one theorem9, by calling Theorem 6.62 the “FTC, part 1”,
and call Theorem 6.64 the “FTC, part 2” (e.g. [4, 9]). Some textbooks call Theorem
6.62 the “FTC–Second Form” and Theorem 6.64 the “FTC–First Form”. (Thus, among
authors calling Theorems 6.62 and 6.64 parts or forms of the same theorem, there is
inconsistency about which part/form is the first, and which is the second.) In [10], no
theorem is given a name that includes “FTC”; Theorems 6.64 and 6.62 are stated but
not given names. Rudin [6,7] states only the stronger versions of Theorems 6.64 and 6.62
(Theorems 6.70 and 6.71), calls Theorem 6.70 the FTC, and does not give a name to
Theorem 6.71.

What all the theorems whose textbook names include “FTC” (when the theorems
are named at all) have in common is that they are theorems about, and only about,
an “inverse” relationship of differentiation and integration (their conclusions are purely
about the derivative of an integral or the integral of a derivative). Sometimes you may see
“FTC” included in the name of Theorem 6.71, but this is less conventional than leaving
the theorem un-named, because the first assertion of Theorem 6.71 has nothing to do with
a relation between integration and differentiation. (Apostol’s treatment in [3], in which
he says only that part of his un-named version of Theorem 6.71 is called the First FTIC,
is more conventional.)

8In [2] and [3], Apostol works with a generalized version of the Riemann integral called the Riemann-
Stieltjes integral. In some cases, but not all, he specifically states what various theorems reduce to for
the Riemann integral. A similar comment applies to Rudin [6, 7].

9Presumably, authors’ reasons for never doing this explicitly are similar to those mentioned in footnote
7.
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The upshot is that students should take none of these name-variants as gospel. It is
okay to call any of Theorems 6.62, 6.64, 6.70, and 6.71 the FTC, or part of the FTC, or
a form or version of the FTC.

The writer of these notes generally regards Theorem 6.65 (equivalently, Theorem 6.64)
as the “true” FTC, but when there is a need to refer to the (extremely important) Theorem
6.62, he uses language that implicitly combines Theorem 6.62 and Theorem 6.64 into
one grand FTC; hence the name given here to Theorem 6.62. (This is similar to the
approach that calls Theorems 6.64 and 6.62 “parts 1 and 2”—in whatever order—of the
FTC.) Theorem 6.65 has a place in mathematics that is rather more special than that of
Theorem 6.62, in several respects:

• Theorem 6.65 is the first of several important theorems, covered in a traditional
Calculus 3 course, that have a certain formal similarity that is actually very deep.
Other theorems in this collection are the “Fundamental Theorem of Line Integrals”,
Green’s Theorem, Stokes’s Theorem, and the Divergence Theorem. Each of these
theorems pertains to integrating a suitably defined derivative “dω” of a suitably
defined object ω over a “nice” n-dimensional set S with (n−1)-dimensional boundary
∂S (n = 1, 2, or 3), and makes a statement of the form

n-dimensional integral of dω over S = (n− 1)-dimensional integral of ω over ∂S.

(For these purposes, the 0-dimensional integral of a function F : [a, b] → R is
simply F (b) − F (a).) This collection of theorems generalizes to a single theorem,
also called Stokes’s Theorem, that holds for all n ≥ 1 (not just n = 1, 2, 3). The
FTC (in the form 6.65) is simultaneously a special case of this generalized version of
Stokes’s Theorem, and a key step in its proof. This more general Stokes’s Theorem
is extremely important on its own, but is also the inspiration for a large subject in
algebraic topology called “homology and cohomology theory”.

• As discussed in Remark 6.68, Theorem 6.64 (equivalent to Theorem 6.65) is the
reason that we use the symbol “

∫
” for antiderivatives.

N

6.8 Change of variable

Definition 6.73 Let U ⊂ R be open.

(a) A function g : U → R is continuously differentiable if g is differentiable and g′ is
continuous.

(b) Let V ⊂ R, let g : U → V be a function, and let g̃ : U → R be the function defined
from g by simply changing the codomain to R. (Equivalently, g̃ = ι ◦ g, where ι : V → R
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is the inclusion map; i.e. ι(x) = x for all x ∈ V .) We say that g is (continuously)
differentiable if g̃ is (continuously) differentiable. N

Proposition 6.74 (Change-of-variable in one-dimensional integrals) Let U, I ⊂
R be open intervals, f : U → R a continuous function, ϕ : I → U a continuously
differentiable function. Then for any a, b ∈ I,∫ ϕ(b)

ϕ(a)

f =

∫ b

a

(f ◦ ϕ)ϕ′ ; (6.55)

equivalently, in “dummy-variable notation”,∫ ϕ(b)

ϕ(a)

f(u) du =

∫ b

a

f(ϕ(x))ϕ′(x) dx. (6.56)

Proof: Fix a ∈ U . Define F : U → R by F (y) =
∫ y
ϕ(a)

f. Then, by Theorem 6.62, F is

differentiable and F ′ = f . Define G : I → R by G = F ◦ ϕ. Then G is the composition
of differentiable functions, so G is differentiable and G′ = (F ′ ◦ ϕ)ϕ′ = (f ◦ ϕ)ϕ′. The
function (f ◦ ϕ)ϕ′ is continuous (why?), so by Theorem 6.62, the function H : I → R
defined by H(x) =

∫ x
a

(f ◦ ϕ)ϕ′ is differentiable, and H ′ = (f ◦ ϕ)ϕ′ = G′. Since I is
an interval, “H ′ = G′” implies that G − H is constant (see the proof of Theorem 6.64).
Hence for all x ∈ I,

G(x)−H(x) = G(a)−H(a) = F (ϕ(a))−H(a) =

∫ ϕ(a)

ϕ(a)

f −
∫ a

a

(f ◦ ϕ)ϕ′ = 0− 0 = 0.

Hence G(x) = H(x) for all x ∈ I. In particular, G(b) = H(b), which is exactly
equation (6.55).

Remark 6.75 Writing the result of Proposition 6.74 in the form (6.56) explains the
terminology “change of variable”; we think of the dummy variables in (6.56) as being
related by the equation u = ϕ(x). However, observe that in this proposition, ϕ need not
be one-to-one. This is a remarkable feature of the “one-dimensional” change-of-variables
formula that is not shared by the change-of-variables formula for multiple integrals (the
last topic we will study in this course, if we complete the syllabus).

Remark 6.76 (Helpfulness of Leibniz notation when changing variables) In the
Leibniz notation for the derivative of a function f , names are chosen for the independent
and dependent variables—say x and y, respectively, related by the equation y = f(x);
sometimes we simply write “y = y(x).” With this choice of variables, the Leibniz nota-
tion for f ′(x) is dy

dx
(in which we must remember that the right-hand side is not actually
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a fraction with real numbers in numerator and denominator). In some situations, this
notation can lead to problems; in others, it is extremely helpful. The change-of-variables
formula(s) in Proposition 6.74 is an instance in which the Leibniz notation is a truly
marvelous mnemonic device. In place of introducing a name ϕ for the functional relation
between u and x that we’re thinking of when we write the formula (6.56), we simply
write “u(x)” in place of ϕ(x) on the right-hand side, and write du

dx
in place of ϕ′(x). In

the limits of integration on the left-hand side, instead of writing “ϕ(a)” and “ϕ(b)”, we
could write u(a) and u(b), but—since we are thinking of this as a change of variables—we
often write “u = u(a)” and “u = u(b)” instead. For the sake of symmetry, we often use
similar notation for the limits of integration on the right-hand side. Equation (6.56) then
becomes ∫ u=u(b)

u=u(a)

f(u) du =

∫ x=b

x=a

f(u(x))
du

dx
dx,

or, even more familiarly, ∫ x=b

x=a

f(u(x))
du

dx
dx =

∫ u=u(b)

u=u(a)

f(u) du. (6.57)

In other words, if we simply pretend that du
dx

in (6.57) is a true fraction, whose denominator
can be cancelled by the “dx” appearing to its right, then it appears “obvious” that the left-
hand side of (6.57) equals the right-hand side. While this logic for equating the left-hand
side with the right-hand side is completely bogus, it does allow us to remember (6.55)
and (6.56)—which we have rigorously proven—more easily. This is a tremendous benefit,
and both student and seasoned mathematician alike have no reason to be embarrassed by
relying on the above “abuse of notation” (pretending that du

dx
is a fraction, etc.) to help

remember (6.55) and (6.56). Just keep in mind that a valid proof is needed to deduce that
(6.57) is correct; “proof by abuse of notation” (or “proof by misunderstanding notation”)
is not a valid method of proof. N

Remark 6.77 As the student will recall from Calculus 1, Proposition 6.74 is a useful
tool for the evaluation of integrals. Reasonable names for this tool are “integration by
substitution” and “changing variables in the integral”.10 Calculus 1-2-3 tomes currently
on the market usually call this technique, and its analog for indefinite integrals, by the
abysmal name “u-substitution”. You will not find this terminology in older, “classic”
textbooks such as [1–3,8,11], or in Rosenlicht [5]. In older books, the technique is named
according to the concept of substitution, rather than a letter that is commonly used
in substitutions. Calling this technique “u-substitution” is like calling every function
f : (subset of R)→ R an “x-function”. N

10However, once we learn about changing variables in multiple integrals—a topic at the end of this
course, if we complete the syllabus—we will see that “changing variables” is not a great description of
(6.56) unless ϕ restricts to a bijection from the interval with endpoints a, b to the interval with endpoints
ϕ(a), ϕ(b).

41



6.9 Integration of vector-valued functions

This section is an expanded version of Rosenlicht’s homework problem VI.6, a problem
that illustrates the generality and several strengths of the Riemann-sum approach to the
Riemann integral.

Throughout this section, (V, ‖ ‖) denotes a complete normed vector space11, with the
associated metric d. Usually we will write simply V rather than (V, ‖ ‖), with understand-
ing that V has been given a fixed norm ‖ ‖ for which the metric space (V, d) is complete.
We will write 0V for the zero element of V. For c ∈ R and v ∈ V , we define “vc” to
mean cv. Open balls in V will generally be denoted by notation of the form “Bε(v)”,
but in situations in which both balls in V and balls in R enter the discussion, we put an
appropriate superscript V or R on the “B”.

We will extend the theory of the Riemann integral from the realm of real-valued
functions to the realm of vector-valued functions, by which we mean functions from an
interval [a, b] to a (complete, normed) vector space V . We do not assume that V is finite-
dimensional, except where noted. However, the case V = Rn (with, say, the Euclidean
norm) is an important special case, and it is very helpful to keep this case in mind when
trying to grasp what various definitions, propositions, etc., are saying.

Definition 6.78 (Riemann sums) Let f : [a, b] → V be a function and let (P, T ) =
(P, {t1, . . . tN}) be a pointed partition of [a, b]. The Riemann sum for f corresponding to
(P, T ) is

S(f ;P, T ) =
N∑
j=1

f(tj)∆j . (6.58)

As we did for real-valued functions, we will write

S(f ;P ) = {S(f ;P, T ) : T is a pointing of P},

and for each δ > 0, write

Sδ(f) =
⋃
{S(f ;Q) : Q ∈ Pδ([a, b])}.

N

Note that there is no difference between the definitions (6.2) and (6.58) of Riemann
sums, except that in (6.58) the function f is taking its values in V rather than R. The
same definition would work with V replace by any vector space (whether or not normed
or complete); all that is needed for the definition (6.58) is the vector-space structure on

11A complete normed vector space is called a Banach space, but to help the student keep in mind the
important features we are assuming of our (V, ‖ ‖), we will stick to the self-descriptive term “complete
normed vector space”.
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V . For the next definition, we need only a little more: the metric structure on V given by
a norm. This definition could be written exactly as Definition 6.6, simply replacing the
absolute-value symbols by norm-symbols, but we will use our notation “Sδ(f)” to state
the definition more efficiently (as we did for real-valued functions in Remark 6.14).

Definition 6.79 (Integrability) A function f : [a, b] → V is (Riemann) integrable if
there is a vector A ∈ V such that for each ε > 0 there exists δ > 0 such that Sδ(f) ⊂ Bε(A).
More generally, if f is a V -valued function whose domain includes [a, b], we say that f is
integrable on [a, b] (or over [a, b]) if f |[a,b] is integrable. N

We continue our convention (for these notes) that “integrable” means “Riemann inte-
grable” and that all integrals we discuss are Riemann integrals.

If there exist distinct A,A′ ∈ V both satisfying the condition satisfied by A in Def-
inition 6.79, then for ε = ‖A − A′‖/2 and S ∈ V we cannot have both ‖S − A‖ < ε
and ‖S − A′‖ < ε (the triangle inequality would lead to a contradiction). Therefore if,
just as for real-valued functions, if f is integrable on [a, b] then there is a unique A ∈ V
satisfying the condition in Definition 6.79. Thus we can define the integral of f exactly
as in Definition 6.8, just with R replaced by V :

Definition 6.80 Let f : [a, b] → V be integrable. We define the integral of f to be the

unique A ∈ V satisfying the condition given in Definition 6.6, and denote this A as
∫ b
a
f

or as
∫ b
a
f(x)dx, etc. for any dummy variable. More generally, if f is a V -valued function

on a domain that includes [a, b], and f is integrable on [a, b], we use the notation
∫ b
a
f

(or
∫ b
a
f(x)dx, etc.) for the integral of f |[a,b], and refer to the value of this integral as the

integral of f over [a, b]. We define the phrase “
∫ b
a
f exists” (or “

∫ b
a
f(x) dx exists”, etc. )

to mean that f is integrable on [a, b]. N

Notation 6.81 We let Func([a, b], V ) denote the set of all functions [a, b] → V , and let
R([a, b], V ) ⊂ Func([a, b], V ) denote the set of integrable functions from [a, b] to V .

The set Func([a, b], V ) is itself a vector space, with zero element the constant function
x 7→ 0V , and with the vector-space operations defined through pointwise operations: for
f, g ∈ Func([a, b], V ) and any c ∈ R, we define elements f + g and cf of Func([a, b], V ) by
(f + g)(x) := f(x) + g(x) and (cf)(x) := cf(x) for all x ∈ [a, b].

Remark 6.82 If dim(V ) = 0, then V = {0V } and Func([a, b], V ) contains only the
constant function x 7→ 0V . All Riemann sums of this function have the value 0V . Hence
this function is integrable, and the value of the integral is 0V .

Thus, in a discussion of integrating vector-valued functions, the 0-dimensional vector
space is not interesting. We have not excluded it from our discussion, though, since a
restriction of the form “Assume dim(V ) ≥ 1” might give the impression that something
goes wrong if dim(V ) = 0, rather than that this case is simply uninteresting. N
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Exercise 6.12 Recall that two norms ‖ ‖1, ‖ ‖2 on V are called equivalent if there exist
real numbers c1, c2 > 0 such that for all v ∈ V we have ‖v‖2 ≤ c1‖v‖1 and ‖v‖1 ≤ c2‖v‖2.
Show that if the given norm ‖ ‖ on V is replaced by any equivalent norm, neither the set
R([a, b], V ) nor the value of any integral changes.

For Exercises 6.13, 6.14, and 6.15 below, you simply need to go through the proofs
of the corresponding statements for real-valued functions, and observe that if you replace
absolute-value symbols (if they occur at all) by norm-symbols, the same arguments work
verbatim.

Exercise 6.13 Show that the statements in Exercise 6.1 for functions f : [a, b]→ R also
hold for functions f : [a, b]→ V .

Exercise 6.14 Establish the analog of Example 6.11 for V -valued functions: For any
v ∈ V , the constant function f : [a, b]→ V given by f(x) = v is integrable, and∫ b

a

v dx = (b− a)v.

Proposition 6.83 (linearity of the integral) The set R([a, b], V ) is a vector space (a

vector subspace of Func([a, b], V )), and the map R([a, b], V ) → V defined by f 7→
∫ b
a
f is

linear.

Exercise 6.15 Prove Proposition 6.83.

Since a general vector space is not an ordered set (statements such as “v < w” for
v, w ∈ V are meaningless unless V = R or V = {0V }), there are no analogs of Proposition
6.18 or Corollary 6.19 for V -valued functions (for general V ). For the same reason, there
are no analogs of upper and lower sums. However, we used upper and lower sums only
as a tool to simplify proofs and to aid in visualization of certain facts. Most facts about
integrable real-valued functions that do not explicitly (i.e. in their statements, not just
their proofs) rely on the fact that R is ordered, do generalize to V -valued functions.
For some of these facts, we will have to use a different proof-strategy, since we often
used the fact that R is ordered as a crutch to simplify proofs (and often to gain useful
insight!). The proofs of results such as “integrable implies bounded” and “continuous
implies integrable”, given in this section for V -valued functions, would have worked just
as well earlier for R-valued functions.

Proposition 6.84 (“Integrable implies bounded”) If f : [a, b] → V is integrable,
then f is bounded.
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Proof: Let f ∈ R([a, b], V ), and let A =
∫ b
a
f . Let δ > 0 be such that Sδ(f) ⊂ B1(A).

Fix a partition P = {x0, . . . xN} of [a, b] of width less than δ.

Assume that f is unbounded. Then f is unbounded on at least one of the intervals
Ij := [xj−1, xj], since there are only finitely many such intervals. Let j0 ∈ {1, . . . , N} be
such that f is unbounded on Ij0 . For each n ∈ N, choose zn ∈ Ij0 such that ‖f(zn)‖ > n;
such zn exist by the unboundedness assumption. For each j ∈ {1, . . . , N} with j 6= j0,

fix any number tj ∈ [xj−1, xj], let T (n) be the pointing {t(n)1 , . . . , t
(n)
N } of P for which

t
(n)
j =

{
tj if j 6= j0,
zn if j = j0 ,

and let A′ =
∑

j 6=j0 f(tj)∆j. Then, using the triangle inequality,

‖S(f ;P, T (n))− A‖ = ‖f(zn)∆j0 + A′ − A‖ ≥ ‖f(zn)∆j0‖ − ‖A− A′‖
= ‖f(zn)‖∆j0 − ‖A− A′‖
> n∆j0 − ‖A− A′‖.

For n sufficiently large, n∆j0 − ‖A − A′‖ > 1, implying that S(f ;P, T (n)) /∈ B1(A), a
contradiction.

Hence f is bounded.

To get rid of our reliance on upper and lower sums in various proofs, we need to es-
tablish Theorem 6.32’s “(i) ⇐⇒ (iv)” implication in a way that does not use the order
structure of R (in particular, a way that does involve statement (ii) or (iii) of that theo-
rem). We do this by copying Rosenlicht’s Lemma 1 in [5, Section VI.3], simply replacing
“real-valued” replaced by “V -valued”, and absolute values by norms:

Proposition 6.85 Let f ∈ Func([a, b], V ). Then f is integrable if and only if, for each
ε > 0, there exists δ > 0 such that for all S1, S2 ∈ Sδ(f), we have ‖S1 − S2‖ < ε.

Proof: First assume that f is integrable. Let A =
∫ b
a
f and let ε > 0. Let δ > 0 be such

that Sδ(f) ⊂ Bε/2(A). Then for all S1, S2 ∈ Sδ(f) we have

‖S1 − S2‖ = d(S1, S2) ≤ d(S1, A) + d(A, S2) <
ε

2
+
ε

2
= ε.

This proves the “only if” assertion of the proposition.

Conversely, assume that for each ε > 0, there exists δ > 0 such that for all S1, S2 ∈
Sδ(f), we have ‖S1 − S2‖ < ε. Let (Pn)∞n=1 be a sequence of partitions of [a, b], and
(S(n))∞n=1 a sequence of Riemann sums of f , such that for all n we have wid(Pn) < 1

n

and S(n) ∈ S(f ;Pn). Let ε > 0, and let δ be such that for all S1, S2 ∈ Sδ(f), we have
‖S1 − S2‖ < ε. Let N ∈ N be any integer greater than 1/δ. Then for all n,m ≥ N
the partitions Pn, Pm both have widths less than δ, so ‖S(n) − S(m)‖ < ε. Therefore the
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sequence (S(n)) in (V, d) is Cauchy. Since (V, d) is complete, this sequence converges; let
A denote its limit.

Again let ε > 0 be arbitrary, and now let δ > 0 be such that for all S1, S2 ∈ Sδ(f), we
have ‖S1 − S2‖ < ε

2
. Let N ∈ N be such that N > 1

δ
and ‖S(N) − A‖ < ε

2
; such N exists

since (S(n)) converges to A. For every S ∈ Sδ(f) we then have

d(S,A) ≤ d(S, S(N)) + d(S(N), A) <
ε

2
+
ε

2
= ε.

Hence f is integrable.

Exercise 6.16 Prove that the analog of Proposition 6.55, “Additivity of the integral”,
holds for V -valued functions. The first half of the proof of Proposition 6.55 can be
mimicked fairly easily. For the second half, which made use of upper and lower sums,
you will need to figure out how to use Proposition 6.85 in place of Proposition 6.45, the
“Step-function lemma”.

Definition 6.86 Let V ∗ denote the set of continuous linear transformations from V → R.
(V ∗ is called the dual space or continuous dual of V .)

The handout “Some notes on normed vector spaces”
(http://dgarchive.com/classes/4212 s19/misc handouts/normed vector spaces.pdf) proves,
among other things, several facts we will need concerning linear transformations from V
to R. We collect these here into a proposition so that we may refer to them easily:

Proposition 6.87

(a) A linear transformation ξ : V → R is continuous if and only if there exists a real
number K such that

|ξ(v)| ≤ K‖v‖ for all v ∈ V. (6.59)

(b) If V is finite-dimensional, then every linear transformation from V to R is contin-
uous.

(c) If V is finite-dimensional, then any two norms on V are equivalent.

We mention a few things in passing:

• The “normed vector spaces” handout actually proves (a) and (b) for linear trans-
formations from V to any normed vector space, not just R.
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• Facts (b) and (c) are false if is V infinite-dimensional.

• For fact (a), all that we will need is the “only if” part.

One additional fact that we will use, not mentioned in the “normed vector spaces”
handout, is that a finite-dimensional vector space, endowed with any norm, is complete.
This follows from facts proven (one hopes) in MAA 4211: (i) If d1, d2 are equivalent
metrics on a set E (“equivalence” being defined the same way as for norms on vector
spaces), then (E, d1) is complete if and only if (E, d2) is complete. (ii) If two norms on a
vector space are equivalent, so are their associated metrics. (iii) If V has finite dimension
n ≥ 1, and ‖ ‖ is the `∞ (or the `2) norm determined by some choice of basis, then V is
complete with respect to the associated metric.

Thus, every finite-dimensional normed vector space is a complete normed vector space.

Returning to general V (not necessarily finite-dimensional): given any
f ∈ Func([a, b], V ) and any ξ ∈ V ∗, the composition ξ ◦ f is a real-valued function
on [a, b]. The next proposition relates the integrability, and the integrals, of the V -valued
function f and the real-valued function ξ ◦f . Before we state the proposition, the student
should do the following easy exercise relating Riemann sums of the V -valued function f
and the real-valued function ξ ◦ f .

Exercise 6.17 Show that for any f ∈ Func([a, b], V ) and ξ ∈ V ∗, and any pointed
partition (P, T ) of [a, b],

ξ (S(f ;P, T )) = S(ξ ◦ f ;P, T ). (6.60)

Proposition 6.88 If f ∈ R([a, b], V ), then for every ξ ∈ V ∗ we have ξ ◦ f ∈ R([a, b]),
and

ξ

(∫ b

a

f

)
=

∫ b

a

ξ ◦ f. (6.61)

Proof: Let f ∈ R([a, b], V ), let ξ ∈ V ∗, and let A =
∫ b
a
f . Let K > 0 be such that (6.59)

is satisfied. Let ε > 0 be given, let ε1 = ε
K

, and let δ > 0 be such that Sδ(f) ⊂ BV
ε1

(A).

Now let (P, T ) be a pointed partition of [a, b] of width less than δ. Then S(f ;P, T ) ∈
BV
ε1

(A), and, using equation (6.60),

|S(ξ ◦ f ;P, T )− ξ(A)| = |ξ (S(f ;P, T ))− ξ(A)| = |ξ (S(f ;P, T )− A) |
≤ K‖S(f ;P, T )− A‖
< Kε1 = ε,

so S(ξ ◦ f ;P, T ) ∈ BR
ε (ξ(A)).
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Hence Sδ(ξ ◦ f) ⊂ BR
ε (A). Since ε was arbitrary, it follows that ξ ◦ f ∈ R([a, b]) and

that 6.61 holds.

Results much stronger than Proposition 6.88 are true if V is finite-dimensional. We
show one of these next, and deduce as a corollary that if V is finite-dimensional, the
“if . . . then” in Proposition 6.88 can be strengthened to “if and only if”. For the next
few pages, to make visually clear which objects are elements of V and which are real
numbers, we will use boldface for elements of V and for V -valued functions. (However,
R still denotes the reals!)

A function f : [a, b] → Rn is often written in the form (f1, . . . , fn), where the fi are
real-valued functions on Rn. We can also write (f1, . . . , fn) as

∑n
i=1 fiei, where {ei}ni=1

is the standard basis of Rn (ei is the vector whose ith coordinate is 1, and all of whose
other coordinates are 0). The coordinate functions determined by the basis {ei}ni=1 are
exactly the usual coordinate functions {xi : Rn → R}ni=1 (the functions defined by
xi(a1, a2, . . . , an) = ai). Observe that fi = xi ◦ f . The student should keep this con-
crete example in mind when reading the next proposition, while remembering that Rn is
just one example of an n-dimensional vector space, and that the standard basis of Rn is
just one example of a basis of Rn.

Proposition 6.89 Assume that V has finite dimension n ≥ 1 and let {vi}ni=1 be a basis
of V . Let f ∈ Func([a, b], V ), and let f1, . . . , fn be the unique real-valued functions on
[a, b] defined by writing f pointwise in terms of a basis:

f(x) =
n∑
i=1

fi(x) vi for all x ∈ [a, b].

Then the V -valued function f is integrable if and only if each of the real-valued functions
fi is integrable. In the integrable case,∫ b

a

(f1v1 + · · ·+ fnvn) =

(∫ b

a

f1

)
v1 + · · ·+

(∫ b

a

fn

)
vn . (6.62)

Proof: Let {ξi : V → R}ni=1 be the coordinate functions on V determined by the basis
{vi}ni=1. (Thus ξi(

∑
j ajvj) = ai, w =

∑n
i=1 ξi(w)vi for all w ∈ V , and fi = ξi ◦ f

for 1 ≤ i ≤ n.) Then for each i ∈ {1, . . . , n}, the function ξi is a linear transformation
V → R, so by Proposition 6.87 parts (b) and (a), ξi ∈ V ∗ and there exists Ki > 0 such that
|ξi(w)| ≤ Ki‖w‖ for all w ∈ V . Select such K1, . . . , Kn and let K = max{Ki : 1 ≤ i ≤ n}.

First assume that f is integrable on [a, b], and let A =
∫ b
a

f(x) dx. For 1 ≤ i ≤ n let
Ai = ξi(A); thus A =

∑n
i=1Aivi. Let ε > 0, let ε1 = ε/K, and let δ > 0 be such that

Sδ(f) ⊂ BV
ε1

(A).
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Let (P, T ) be a pointed partition of [a, b] of width less than δ. For each i ∈ {1, 2, . . . , n}
let Si = S(fi;P, T ). Define S = S(f ;P, T ). Since wid(P ) < δ, we have ‖S−A‖ < ε1.

Fix i ∈ {1, 2, . . . , n}. Since ξi : V → R is linear, we may apply Exercise 6.17 to obtain

ξi(S) = ξi (S(f ;P, T )) = S(ξi ◦ f ;P, T ) = S(fi;P, T ) = Si.

Hence, again using the linearity of ξi,

|Si − Ai| = |ξi(S)− ξi(A)| = |ξi(S−A)| ≤ Ki‖S−A‖ < Kε1 = ε.

Therefore we have produced δ > 0 such that for every arbitrary pointed partition
(P, T ) of width less than δ, we have S(fi;P, T ) ∈ BR

ε (Ai). Since ε was arbitrary, this

proves that fi is integrable and that
∫ b
a
fi = Ai. Since i ∈ {1, . . . , n} was arbitrary, this

is true for every i, and

∫ b

a

f = A =
n∑
i=1

Aivi =
n∑
i=1

(∫ b

a

fi

)
vi.

We have now shown that if f is integrable on [a, b], then (i) each component function fi
is integrable on [a, b], and (ii) the equality (6.62) holds. For the converse of the integrability
implication, assume now that fi is integrable on [a, b] for 1 ≤ i ≤ n.

Let Ai =
∫ b
a
fi , 1 ≤ i ≤ n, and let A =

∑n
i=1Aivi. Let ε > 0, let C =

∑n
i=1 ‖vi‖,

and let ε1 = ε/C. For 1 ≤ i ≤ n let δi > 0 be such that Sδi(fi) ⊂ BR
ε1

(Ai), and let
δ = min{δi : 1 ≤ i ≤ n}.

Let (P, T ) be a pointed partition of [a, b] of width less than δ, and let S = S(f ;P, T ).
Then, again using Exercise 6.17,

S−A =
n∑
i=1

ξi(S)vi −
n∑
i=1

Aivi

=
n∑
i=1

[ξi(S(f ;P, T ))− Ai] vi

=
n∑
i=1

[S(ξi ◦ f ;P, T )− Ai] vi

=
n∑
i=1

(S(fi;P, T )− Ai) vi .
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Hence

‖S−A‖ ≤
n∑
i=1

‖(S(fi;P, T )− Ai) vi‖

=
n∑
i=1

|S(fi;P, T )− Ai| ‖vi‖

<

n∑
i=1

ε1‖vi‖

= ε1C = ε.

Therefore we have produced δ > 0 such that ‖S −A‖ < ε for all S ∈ Sδ(f). Since ε
was arbitrary, it follows that f is integrable on [a, b].

Corollary 6.90 Assume that V is finite-dimensional and let f ∈ Func([a, b], V ). Then
f ∈ R([a, b], V ) if and only if for every ξ ∈ V ∗ we have ξ ◦ f ∈ R([a, b]).

Proof: The “only if”part of the implication follows from Proposition 6.88. For the “if”
part, assume that for every ξ ∈ V ∗ we have ξ ◦ f ∈ R([a, b]). If dim(V ) = 0 then
trivially f ∈ R([a, b], V ), so assume that n := dim(V ) ≥ 1. Let {v1, . . . ,vn} be a basis
of V , and, as in the proof of Proposition 6.89, let {ξi : V → R}ni=1 be the corresponding
coordinate functions on V . Then for each i, we have ξi ∈ V ∗, so (by our hypothesis) ξi ◦ f
is integrable. But ξi ◦ f is exactly the function fi in the statement of Proposition 6.89.
Hence that Proposition implies that f is integrable.

Remark 6.91 Equation (6.62) formally looks very similar to

∫ b

a

(
m∑
i=1

cifi

)
=

m∑
i=1

ci

∫ b

a

fi (where c1, . . . cm ∈ R), (6.63)

just with the real constants ci in (6.63) replaced by “vector constants” vi that happen
to form a basis of V . But (6.62) and (6.63) are really very different statements. For
real-valued functions f1, . . . , fm , the equality (6.63) is one version of the statement that
(i) R([a, b]), the set of integrable real-valued functions on [a, b], is a vector space and that

(ii) “
∫ b
a

” is a linear map R([a, b])→ R. The only meaning of “
∫ b
a

” in equation (6.63) is
integration of a real-valued function on [a, b]. The number of functions m is arbritrary;
it’s not related to the dimension of anything (unlike the n in (6.62)). The corresponding
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statement for V -valued functions is not (6.62); it’s that (i) R([a, b], V ) is a vector space

and that (ii) the map
∫ b
a

: R([a, b], V )→ V is linear:∫ b

a

(
m∑
j=1

cjfj(x)

)
dx =

m∑
j=1

cj

∫ b

a

fj(x) dx (6.64)

for all integers m > 0, all f1, . . . , fm ∈ R([a, b], V ), and all c1, . . . , cm ∈ R.

In (6.64), like in (6.63), the notation “
∫ b
a

” has only one meaning, but in (6.64) the meaning
is integration of a V -valued function on [a, b].

Equation (6.62) may be interpreted, informally, as saying that the basis vectors vj
behave as “vector constants” that can be pulled through the integral sign “just like”
scalar constants (real numbers). But the “just like” is inaccurate. As noted above, in

equation (6.63) the notation “
∫ b
a
” has the same meaning on both sides of the equation;

it is a single operator (fancy name for function) on one vector space, R([a, b], V ). In

(6.62), the same notation “
∫ b
a

” is used for two different operators, the one on the left-
hand side having domain R([a, b], V ), and the one on the right-hand side having domain
R([a, b]). The operators are conceptually similar, but they have very different domains.
It is important to keep in mind that while “Vector constants can be pulled through the
integral sign just like scalar constants” is something that could be conjectured, or even
expected, before proving anything, there is no such thing as “proof by analogy”.

We will say more about equation (6.62) later in Remark 6.98, after establishing some
more results. N

Together, the next two propositions generalize Exercise 6.5 from real-valued functions
to V -valued functions (with V assumed finite-dimensional).

Proposition 6.92 Assume that V is finite-dimensional. If f : [a, b] → V is integrable,
then the real-valued function x 7→ ‖f(x)‖ is integrable.

Proof: Let g : [a, b]→ R denote the function x 7→ ‖f(x)‖.

If dim(V ) = 0 then f is the constant function 0V and g is the constant function 0,
which is integrable.

Assume now that n := dim(V ) ≥ 1 and let {vi}ni=1 be a basis of V . Since every element
of V is a unique linear combination

∑
i aivi, we can define a function ‖ ‖1 : V → R by

‖
∑

i aivi‖1 =
∑

i |ai|. As the student may easily show, ‖ ‖1 is a norm on V . (The proof
is virtually identical to the proof that the `1-norm on Rn is a norm.)

As in Proposition 6.89, let f1, . . . fn be the component-functions of f determined by
this basis, i.e. the unique real-valued functions such that f =

∑
i fivi. By Proposition
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6.89, each component-function fi is integrable, hence also bounded (thus Theorem 6.32
applies to fi).

By Proposition 6.87(3), the norm ‖ ‖1 is equivalent to the given norm ‖ ‖ on V . Let
c > 0 be such that for all v ∈ V , ‖v‖ ≤ c‖v‖1.

Let ε > 0. For each i ∈ {1, . . . , n} let δi > 0 be such that Uδi(fi)− Lδi(fi) < ε
cn

; such
δi exist by the “(i) =⇒ (iii)” implication of Theorem 6.32. Let δ = min{δ1, . . . , δn}. Then
for each P ∈ Pδ([a, b]) and each i ∈ {1, . . . , n} we have

U(fi;P )− L(fi;P ) ≤ Uδ(fi)− Lδ(fi) ≤ Uδi(fi)− Lδi(fi) <
ε

cn
.

Let P = {x0, . . . , xN} ∈ Pδ([a, b]). For 1 ≤ i ≤ n and 1 ≤ j ≤ N let Mi,j =
sup{fi(x) : x ∈ [xj−1, xj]} and mi,j = inf{fi(x) : x ∈ [xj−1, xj]}. Observe that for any
s, t ∈ [xj−1, xj], and any i ∈ {1, . . . , n}, we have

|fi(s)− fi(t)| ≤Mi,j −mi,j. (6.65)

Let T = {t1, . . . , tN} and T ′ = {t′1, . . . , t′N} be arbitrary pointings of P . Then, using the
triangle inequality in the form ‖a‖ − ‖b‖ ≤ ‖a− b‖, we have

S(g;P, T )− S(g;P, T ′) =
N∑
j=1

(‖f(tj)‖ − ‖f(t′j)‖)∆j

≤
N∑
j=1

‖f(tj)− f(t′j)‖∆j

≤
N∑
j=1

c‖f(tj)− f(t′j)‖1 ∆j

= c
N∑
j=1

(
n∑
i=1

|fi(tj)− fi(t′j)|

)
∆j

= c

n∑
i=1

(
N∑
j=1

|fi(tj)− fi(t′j)|∆j

)

≤ c
n∑
i=1

(
N∑
j=1

(Mi,j −mi,j)∆j

)
(using (6.65))

= c

n∑
i=1

(U(fi;P )− L(fi;P ))

< c

n∑
i=1

ε

cn

= ε.

52



Thus S(g;P, T ) − S(g;P, T ′) < ε for all pointings T, T ′ of P . Taking the supremum
over T and then the infimum over T ′, we deduce that U(g;P )− L(g;P ) ≤ ε. Since ε was
arbitrary, it follows from Proposition 6.45 that g is integrable.

We are done restricting attention to finite-dimensional V for now, so we resume using
non-boldface letters for elements of V and for V -valued functions.

Proposition 6.93 (“Triangle inequality for integrals”) Let f ∈ R([a, b], V ), and
let ‖f(·)‖ : [a, b]→ R denote the function x 7→ ‖f(x)‖. Then∥∥∥∥∫ b

a

f

∥∥∥∥ ≤ lim
δ→0

Uδ(‖f(·)‖). (6.66)

Hence if ‖f(·)‖ is integrable, ∥∥∥∥∫ b

a

f(x) dx

∥∥∥∥ ≤ ∫ b

a

‖f(x)‖ dx. (6.67)

Our nickname “triangle inequality for integrals” really refers only to inequality (6.67).
The reason for this nickname is discussed later in item 6 of Remark 6.98.

Proof of Proposition 6.93: Let us write A =
∫ b
a
f and g = ‖f(·)‖.

Let ε > 0, and let δ > 0 be such that Sδ(f) ⊂ BV
ε (A). Let P ∈ Pδ([a, b]) and let

T = {t1, . . . , tN} be a pointing of P . Then, using the triangle inequality,

‖S(f ;P, T )‖ =

∥∥∥∥∥
N∑
j=1

f(tj)∆j

∥∥∥∥∥ ≤
N∑
j=1

‖f(tj‖∆j

= S(g;P, T )

≤ U(g;P ) (by the definition of U(g;P ))

≤ Uδ(g) (by the definition of Uδ(g)).

But ‖S(f ;P, T )− A‖ < ε, so

‖A‖ ≤ ‖A− S(f ;P, T )‖+ ‖S(f ;P, T )‖ < ε+ ‖S(f ;P, T )‖ ≤ ε+ Uδ(g);

i.e. ‖A‖ < Uδ(g) + ε. Hence, by an order-property of limits of real-valued functions,

‖A‖ ≤ lim
δ→0

Uδ(g) + ε.

Since ε was arbitrary, we conclude that ‖A‖ ≤ limδ→0 Uδ(g), which is (6.66).
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If g is integrable, then limδ→0 Uδ(g) =
∫ b
a
g (by Theorem 6.32), so (6.66) reduces to

(6.67) in this case.

Observe that, by Proposition 6.92, if V is finite-dimensional, then under the hypothe-
ses of Proposition 6.93 the function ‖f(·)‖ is automatically integrable, so the stronger
conclusion (6.67) holds. We record this fact later in Corollary 6.97.

Remark 6.94 (Optional reading, intended for students who have read Section 6.4.) In
view of the Darboux theorem mentioned in Section 6.4, we can alternatively write (6.66)
as ∥∥∥∥∫ b

a

f(x) dx

∥∥∥∥ ≤ ¯∫ b

a

‖f(x)‖ dx.

N

Proposition 6.95 (“Continuous implies integrable”) If f : [a, b] → V is continu-
ous, then f is integrable.

Proof: Let f be a continuous function from [a, b] to V . Since [a, b] is compact, f is
uniformly continuous. Let ε > 0, and let δ > 0 be such that if x, y ∈ [a, b] and |x− y| < δ
then ‖f(x)− f(y)‖ < ε1 := ε

2(b−a) .

Let P1 = {x0, . . . , xN1}, P2 = {y0, . . . , yN2} ∈ Pδ([a, b]). Let P = P1 ∪ P2 =
{z0, . . . , zN}; then P ∈ Pδ([a, b]) as well. For 1 ≤ j ≤ N1 let ij ∈ {1, 2, . . . N} be
the index for which xj = zij . (It is helpful to draw a diagram of the interval [a, b] to follow
the proof from this point on.) Let T1 = {t1, . . . , tN1}, T = {s1, . . . , sN} be pointings of
P1, P respectively. Then

S(f ;P1, T1)− S(f ;P, T ) =

N1∑
j=1

f(tj)(xj − xj−1)−
N∑
i=1

f(si)(zi − zi−1)

=

N1∑
j=1

f(tj)

 ij∑
i=ij−1+1

(zi − zi−1)

− N1∑
j=1

 ij∑
i=ij−1+1

f(si)(zi − zi−1)


=

N1∑
j=1

 ij∑
i=ij−1+1

(f(tj)− f(si))(zi − zi−1)

 .

Note that in the expression “f(tj)− f(si)” on the last line, we have ij−1 ≤ i− 1 < i ≤ ij,
implying xj−1 ≤ zi−1 ≤ si ≤ zi ≤ xj. Thus si lies in [xj−1, xj], as does tj. Since
xj − xj−1 < δ, we have |tj − si| < δ, implying ‖f(tj) − f(si)‖ < ε1. Therefore, applying
the iterated triangle inequality, we have
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‖S(f ;P1, T1)− S(f ;P, T )‖ ≤
N1∑
j=1

∥∥∥∥∥∥
 ij∑
i=ij−1+1

(f(tj)− f(si))(zi − zi−1)

∥∥∥∥∥∥
≤

N1∑
j=1

 ij∑
i=ij−1+1

‖(f(tj)− f(si))(zi − zi−1)‖


=

N1∑
j=1

 ij∑
i=ij−1+1

(zi − zi−1)‖(f(tj)− f(si))‖


<

N1∑
j=1

 ij∑
i=ij−1+1

(zi − zi−1)ε1

 (6.68)

= ε1

N∑
i=1

(zi − zi−1) (6.69)

= ε1(b− a) (6.70)

=
ε

2
. (6.71)

Thus, ‖S(f ;P1, T1) − S(f ;P, T )‖ < ε
2

. Similarly, ‖S(f ;P2, T2) − S(f ;P, T )‖ < ε
2

.
Hence

‖S(f ;P1, T1)− S(f ;P2, T2)‖ ≤ ‖S(f ;P1, T1)− S(f ;P, T )‖+ ‖S(f ;P, T )− S(f ;P2, T2)‖
<

ε

2
+
ε

2
= ε.

Therefore for any S1, S2 ∈ Sδ(f) we have ‖S1 − S2‖ < ε. Since ε was arbitrary, it
follows from Proposition 6.85 that f is integrable on [a, b].

Remark 6.96 The argument above gives a second proof that continuous real-valued func-
tions on [a, b] are integrable, without relying on the Proposition 6.45 (the “Step-function
lemma”).

Corollary 6.97 Let f ∈ R([a, b], V ). If either (a) V is finite-dimensional or (b) f is
continuous, then the real-valued function x 7→ ‖f(x)‖ is integrable, and∥∥∥∥∫ b

a

f(x) dx

∥∥∥∥ ≤ ∫ b

a

‖f(x)‖ dx. (6.72)
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Proof: Let g denote the function x 7→ ‖f(x)‖. Under hypothesis (a), Proposition 6.92
implies that g is integrable. Under hypothesis (b), g is the composition of the continuous
function f : [a, b]→ V with the continuous function ‖ ‖ : V → R. (Students: why is the
latter function is continuous?) Hence g is continuous, so by Theorem 6.53, g is integrable.

Thus, under either hypothesis (a) or (b), the function g is integrable. Therefore
Proposition 6.93 shows that the inequality (6.72) holds.

Remark 6.98 It is worthwhile to revisit the Calculus 3 version of (6.62):

∫ b

a

(f1(t)i + f2(t)j + f3(t)k) dt =

(∫ b

a

f1(t) dt

)
i +

(∫ b

a

f2(t) dt

)
j +

(∫ b

a

f3(t) dt

)
k.

(6.73)

In Calc 3 we are taught that equation (6.73) is the definition of the integral on the left-
hand side. Now that we have proven Proposition 6.89, we see that for the case V = R3,
with any norm (since they are all equivalent), the definition given in Calc 3 is equivalent to
the loftier Definition 6.80. But the loftier definition, while requiring more sophistication
and more work, has several advantages:

1. It shows from the start that we can define integrals of V -valued functions for any
finite-dimensional vector space, not just Rn.

2. It shows from the start that, given a finite-dimensional vector space V , we do not
need to introduce a basis of V in order to define integrals of V -valued functions.

3. By defining the integral without reference to a basis, the loftier definition guarantees
that the value of the integral is independent of the choice of basis (a fact that needs
to be proven, even for the case V = R3, if we use the Calc 3 definition).

4. It directly incorporates the principle that integration is about adding stuff up (the
“stuff density” being the function we’re integrating), which equation (6.73), taken
as a definition, does not.

5. It is an elegant generalization of the definition of integrals of real-valued functions:
essentially nothing changed in passing from Definitions 6.6 and 6.8 to Definitions
6.79 and 6.80; all we had to do was to replace absolute-value symbols by norm
symbols.

6. It enables us to prove Proposition 6.93 very easily, and to show why, for finite-
dimensional V , we obtain the inequality in Corollary 6.97 for any norm whatsoever
on V . We saw that the inequality (6.66) follows simply from applying the (iterated)
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triangle inequality to Riemann sums. The stronger inequality (6.72)—simply (6.67)
stated a second time—then followed (for finite-dimensional V ) as soon as we showed
that the pointwise norm of an integrable V -valued function is an integrable real-
valued function, which we saw is true for any norm on V . Inequality (6.67) or
(6.72) can be viewed as the iterated triangle inequality generalized from finite sums
to integrals (hence the nickname we have given to Proposition 6.93).

With the generalized Calc 3 definition, the result of Corollary 6.97 in the finite-
dimensional case can also be proven, with a little cleverness but not much difficulty,
for a Euclidean norm on V—one that comes from an inner product. A standard
argument (starting from the generalized Calc 3 definition), presented in [6,7], makes
use of the Cauchy-Schwartz inequality for inner products to obtain (6.72). Unfor-
tunately, this argument obscures the fundamental reason why (6.72) ought to be
true. In addition, not every norm on Rn, or on a general finite-dimensional vector
space, is Euclidean (an `2 norm); it need not even be an `p-norm for any p. Thus,
with a general norm on V , the argument based on the Cauchy-Schwartz inequality
does not yield even the integrability of the pointwise norm of an integrable V -valued
function, let alone the inequality (6.72).

7. The loftier definition tells us (after proving Proposition 6.89) why equation (6.73)
should be true; that it’s not just a definition introduced for convenient bookkeeping.

8. The loftier definition does not even require V to be finite-dimensional; it requires
only that V be a complete normed vector space. (We have seen several examples of
infinite-dimensional complete normed vector spaces in MAA 4211–4212: the space
`∞(R), and the space C(X) for any compact metric space X of infinite cardinality.)
The Calc 3 definition does not generalize to infinite-dimensional V .

The advantages listed above of the loftier definition are only one side of the coin,
however. Even at levels more advanced that of MAA 4211–4212, there are good textbooks
(such as [6, 7]) and good teachers who prefer the “generalized Calc 3 definition” of an
Rn-valued function (with Calc 3’s R3 replaced by Rn), assume boundedness from the
start. This approach defines-away the need to prove Propositions 6.84, 6.88, and 6.89,
and thereby enables other results to be written down sooner12, albeit at the expense of
some insight and generality. (Additional time is saved, in this approach, by asserting
and proving Proposition 6.92 only for the Euclidean norm, rather than for an arbitrary
norm.) In this approach, the fact that the integral of an integrable Rn-valued function
has a basis-independent characterization is something proven, rather than something that
drops out of the definition of “integral”. This is an instance of something quite common
in mathematics: often there are two (or more) approaches to the same topic, with some
theorems in approach A being definitions in approach B and vice-versa. N

12As a practical matter, this can be very important, since semesters have finite length! But several
times in his mathematical life, the author of these notes has been grateful that he learned the “invariant”
definition, i.e. Definition 6.80, early on, so his preference is to expose students to this approach.
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Remark 6.99 The Fundamental Theorem of Calculus (FTC) also generalizes to V -
valued functions. However, since in MAA 4212 we have not yet defined derivatives of
anything other than real-valued functions, the statement and proof of the FTC in this
setting are not included in this chapter.

6.10 Logarithmic and exponential functions

Since the function t 7→ 1
t

is continuous on (0,∞), it is integral over any closed interval
with endpoints in this interval exists. Hence we may define a function as follows:

Definition 6.100 The function log : (0,∞)→ R is defined by

log x := log(x) =

∫ x

1

1

t
dt for each x > 0. (6.74)

Remark 6.101 The function “log” defined above is the natural logarithm function that
you are probably used to denoting “ln”. Mathematicians tend to use the notation “log”
for the natural log function rather than “ln” (except when teaching lower-level calculus
courses and other courses populated largely by engineering majors), and “log10” for the
function you may be used to denoting simply as “log”, because log10 has no special
mathematical significance. Prior to the age of pocket calculators, log10 had much greater
practical significance than it has now; bankers, scientists, and other people who used to
need to do a lot of multiplication by hand, used tables of values of the log10 function in
order to reduce multiplication to the addition of logs. Nowadays, these tasks are done by
computers and pocket calculators. The log10 function still survives in a few log10-based
scales in the sciences, such as the pH scale in chemistry and the decibel scale for sound-
intensity. We also still use the phrase “order of magnitude” in a sense coming from the
log10 function, since human beings brought up with base-10 arithmetic naturally find it
easy to think in terms of how many powers of 10 are involved.

Proposition 6.102 The function log : (0,∞) → R is differentiable, strictly increasing,
bijective, and satisfies the following for all x, y ∈ (0,∞) and all integers n:

(i) log′(x) = 1
x

(where “log′” denotes the derivative of log.)

(ii) log(1) = 0.

(iii) log(xy) = log x+ log y.

(iv) log( 1
x
) = − log x.

(v) log x
y

= log x− log y.
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(vi) log(xn) = n log x.

Proof: Since t 7→ 1
t

is continuous, the Fundamental Theorem of Calculus implies that log
is differentiable and that log′(x) = 1

x
. Since 1

x
> 0 for all x > 0, log is a strictly increasing

(hence injective) function; we will show later that its range is all of R.

Property (ii) is immediate from the defining equation (6.74). To establish property
(iii), let x, y > 0. By Corollary 6.60, we have

log(xy) =

∫ xy

1

1

t
dt =

∫ x

1

1

t
dt+

∫ xy

x

1

t
dt = log x+

∫ xy

x

1

t
dt. (6.75)

In the last integral in (6.75), we may make the substitution t = xs. (More formally, we
define the function ϕ : [min{1, y},max{1, y}] → [min{x, xy},max{x, xy}] by ϕ(s) = xs.
Then ϕ(1) = x, ϕ(y) = xy, and ϕ′(s) = x for all s. See Remarks 6.75 and 6.76.) Applying
the change-of-variable theorem (Proposition 6.74 ), we have∫ xy

x

1

t
dt =

∫ y

1

1

xs
x ds =

∫ y

1

1

s
ds = log y.

Hence (6.75) implies that log(xy) = log x+ log y.

Property (iv) now follows from properties (ii) and (iii) (since x 1
x

= 1), and property
(v) then follows from properties (iii) and (iv) (since x

y
= x 1

y
).

Property (vi) holds for n = 0 by property (ii), and is true trivially for n = 1. Using
property (iii) and induction, it follows easily that property (vi) holds for all n ≥ 1 (details
are left to the student). From this and property (iv), we then find that property (vi)
holds for n ≤ −1 as well.

We have now proven everything except that the range of log is R. For this, we first
note that since 1

t
≥ 1

2
for t ∈ [1, 2], Corollary 6.19 implies

log 2 =

∫ 2

1

1

t
dt ≥

∫ 2

1

1

2
dt =

1

2
,

so

log 2 ≥ 1

2
> 0. (6.76)

Let y ∈ [0,∞), and let n be a positive integer such that n log 2 ≥ y; such n exists since
log 2 > 0. Then, by property (vi), we have log(2n) ≥ y, so y ∈ [log(1), log(2n)]. Since log
is differentiable, log is continuous, so the Intermediate Value Theorem implies that there
exists x ∈ [1, 2n] such that log x = y. Hence log achieves every non-negative real value.
Property (iv) then shows that log achieves every non-positive real value as well, hence
achieves every real value. Thus the range of log is R, as claimed.
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Remark 6.103 In deriving (6.76), we used only Corollary 6.19, which yields the “≥” in
(6.76), since that sufficed for the proof of Proposition 6.102. But using Exercise 6.6(b),
we can actually deduce the strict inequality log 2 > 1

2
. N

Remark 6.104 (A pause to smell the roses) Thanks to our hard work in Sections
6.1–6.7, the proof of part (i) of Proposition 6.102 was very short, so let us take a moment
to reflect on something we’ve achieved with the formula “log′(x) = x−1”. When we first
learn calculus, the first functions we learn how to differentiate are the power-functions
x 7→ xn, where n is a positive integer or zero. Shortly thereafter, we work out the
derivative for negative n as well, discovering the beautiful fact that d

dx
xn = nxn−1 for all

integers n. Later, when we start to study antidifferentiation, our first tool is recognition:
having seen power-functions arise as derivatives of other power functions, we can easily
invert the process. Since 3x2 is the derivative of x3, we know that any multiple of x2

will have some multiple of x3 as an antiderivative. More generally, our derivative formula
tells us that, for every integer n, xn is an antiderivative of nxn−1, hence that xn

n
is an

antiderivative of xn−1, hence that xn+1

n+1
is an antiderivative of xn—with one exception, the

case n = −1. We never see x−1 arising as the derivative of a multiple of a power function,
so at this early stage of our learning, we have no way to find an antiderivative. But the
qualitative Corollary 6.63 tells us that there is one, and the quantitative Theorem 6.62
gives an outright formula for one. The gap is filled!13

Since log : (0,∞) → R is bijective, it has an inverse, so we may make the following
definition:

Definition 6.105 We define the function exp : R → (0,∞), to be the inverse of
log : (0,∞)→ R. N

We will shortly establish some important properties of the exponential function “exp”.
We first record as lemmas a couple of facts we will need. The first of these is an easy
consequence of results proven in MAA 4211 (Rosenlicht problem IV.4 and the Intermediate
Value Theorem):

Lemma 6.106 Let I ⊂ R be an interval, f : I → R a continuous, strictly monotone
function. Then range(f) is an interval J , f is a bijection I → J (hence has an inverse),
and the inverse function f−1 : J → I is continuous.

Exercise 6.18 Prove Lemma 6.106.

13Unfortunately, the all-too-popular “early transcendentals” calculus textbooks rob students of an
appreciation of how marvelous this is, and make it difficult to fall in love with calculus.
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Next is a very useful fact, also easy to prove, that you may have seen proven in
MAA 4211 (where you may also have seen the terminology “limit point” rather than the
synonymous terminology “cluster point”).

Lemma 6.107 (“Substitution lemma for limits”) Let X, Y, Z be metric spaces, p0 a
cluster point of X, and q0 a cluster point of Y . Let f : X\{p0} → Y \{q0}, g : Y \{q0} → Z
be functions, and assume that limp→p0 f(p) = q0 and that limq→q0 g(q) exists. Then

lim
p→p0

g(f(p)) = lim
q→q0

g(q). (6.77)

Remark 6.108 (1) Lemma 6.107 is stated in such a way that f and g do not need to
be defined at p0 and q0 respectively, to allow us to apply the lemma in such cases (one
of which arises in the next Proposition). Nothing goes wrong if f is defined at p0, or g is
defined at q0. (2) If, in place of f as above, we have a function f : X \ {p0} → Y whose
range may include q0, but such that f(B \ {p0}) ⊂ Y \ {p0} for some ball B containing
p0, then the hypotheses of the lemma are met with (B, f |B\{p0}) playing the role of the
lemma’s (X, f). Hence the equality (6.77) holds under these more general hypotheses.

Exercise 6.19 Prove Lemma 6.107.

Proposition 6.109 The function exp : R→ (0,∞) is differentiable, strictly increasing,
bijective, and satisfies the following for all x, y ∈ (0,∞) and all integers n:

(i) exp′ = exp (where “exp′” denotes the derivative of exp.)

(ii) exp(0) = 1.

(iii) exp(x+ y) = exp(x) exp(y)

(iv) exp(−x) = 1
exp(x)

.

(v) exp(x− y) = exp(x)
exp(y)

.

(vi) exp(nx) = (exp(x))n.

Proof: The fact that exp is bijective and strictly increasing follow from the fact that it
is the inverse of a function with these properties. Since log is continuous, Lemma 6.106
implies that exp is continuous.

We next show that exp′ = exp. Let x0 ∈ R and let y0 = exp(x0) (hence x0 = log y0).
Define g : (0,∞) \ {y0} → R by g(y) = y−y0

log y−log y0 . Note that limy→y0
1

g(y)
= log′(y0) (by

definition of log′), hence equals 1
y0

(by Proposition 6.102). Therefore

lim
y→y0

g(y) = lim
y→y0

1
1

g(y)

=
1

limy→y0
1

g(y)

=
1
1
y0

= y0.
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Since exp is one-to-one and exp(x0) = y0, the range of exp |R\{x0} does not include y0.
Hence we may define a function f : R \ {x0} → (0,∞) \ {y0} by f(x) = exp(x) (implying
log f(x) = x). Since exp is continuous, limx→x0 f(x) = f(x0) = exp(x0) = y0. Hence we
may apply Lemma 6.107, yielding

lim
x→x0

g(f(x)) = lim
y→y0

g(y) = y0 = exp(x0). (6.78)

But g(f(x)) = f(x)−y0
log f(x)−log y0 = exp(x)−exp(x0)

x−x0 . Hence limx→x0
exp(x)−exp(x0)

x−x0 = limx→x0 g(f(x)),

which, by (6.78), exists and equals exp(x0). Thus exp is differentiable at x0, and exp′(x0) =
exp(x0). Since x0 was arbitrary, we conclude that the functions exp′ and exp are identical.

Properties, (ii)—(vi) of exp follow from the corresponding properties for log. For
example, for (iii), given any x, y ∈ R, by the bijectivity of log there exist unique a, b ∈
(0,∞) such that x = log a and y = log(b). We then have

x+ y = log a+ log b = log(ab) = log(exp(x) exp(y)),

implying that exp(x + y) = exp(log(exp(x) exp(y))) = exp(x) exp(y). Derivations of the
remaining properties are left to the student.

Remark 6.110 Our proof of the differentiability of exp—the inverse of log—and the
computation of exp′, can be easily generalized to the following theorem:

“ ‘Baby’ Inverse Function Theorem”: Let I, J ⊂ R be open intervals,
let h : I → J a surjective, continuously differentiable function such that, for
all y ∈ I, h′(y) 6= 0. Then h is bijective, the function f = h−1 : J → I is
differentiable, and for all x ∈ J we have f ′(x) = 1

h′(f(x))
.

N

Consider now any positive, real number a. Letting x = log a, property (vi) in Propo-
sition 6.109, read from right to left, says that for any integer n we have an = exp(n log a).
In view of this fact, the following definition does not alter the meaning of an for any
integer n, but gives meaning to “ an ” for all real n:

Definition 6.111 Let a, r ∈ R, with a > 0. We define the number ar ∈ (0,∞) by

ar = exp(r log a).

The next proposition may be summarized as saying that the “usual algebra of expo-
nentiation” for integer exponents holds for real exponents.
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Proposition 6.112 Let a, b, x, y ∈ R, with a > 0 and b > 0. Then:

(i) a0 = 1.

(ii) ax+y = axay.

(iii) a−x = 1
ax

.

(iv) (ax)y = axy.

(v) (ab)x = axbx.

(vi) If a > 1 then the map x 7→ ax is strictly increasing; if a < 1 then this map is strictly
decreasing.

Proof: All these properties follow quickly from Proposition 6.109 and Definition 6.111.
For example, for (ii) we have

ax+y = exp((x+ y) log a) = exp(x log a+ y log a) = exp(x log a) exp(y log a) = axay.

The remaining parts of the proof are left as an exercise to the student.

Exercise 6.20 Complete the proof of Proposition 6.112.

Observe that Definition 6.111 says nothing about how to define 0r. Of course, if r is a
positive integer, we already have a purely algebraic definition of 0r, yielding 0r = 0. Using
the fact that for positive integers n, the unique nth root of 0 is 0, we can naturally extend
the definition “0r = 0” to all positive rational r. But irrational r cannot be handled by
these purely algebraic means. For these, we need a separate definition, which we will
write in a way that applies in both the rational-r and irrational-r cases:

Definition 6.113 For every r > 0, we define 0r = 0.

We do not define the expression “ 0r ” for r ≤ 0; in particular, we do not define “00”.
One motivation for not defining “00” is part (b) of the following exercise. Part (a) of the
exercise provides one motivation for why we do define 0r = 0 for all r > 0.

Exercise 6.21 Using Definitions 6.111 and 6.113, define f̃ : ([0,∞)× [0,∞))\{(0, 0)} →
R by f̃(x, y) = xy. Let f be the restriction of f̃ to the domain (0,∞) × [0,∞); observe
that domain(f̃) = domain(f) ∪ ({0} × (0,∞)).

(a) Show that f̃ is the unique continuous extension of f to ([0,∞)× [0,∞))\{(0, 0)}.
(Note that you need to show two facts about f̃ , not necessarily in the following order:
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(i) that f̃ is continuous, and (ii) that any continuous extension of f to ([0,∞)× [0,∞)) \
{(0, 0)} is the function f̃ .)

(b) Show that there does not exist a continuous extension of f to [0,∞) × [0,∞) =
domain(f̃)∪{(0, 0)}. (Suggestion: Use the fact that any such extension would also be an
extension of f̃ .)

(c) Define g̃ : ([0,∞)×R)\ ({0}× (−∞, 0])→ R by g̃(x, y) = xy. Let g be the restric-
tion of g̃ to the domain (0,∞)×R; observe that domain(g̃) = domain(g)∪({0} × (0,∞)).
Redo parts (a) and (b) with f̃ and f replaced by g̃ and g, respectively.

Exercise 6.22 Determine how Proposition 6.112 generalizes if we allow a ≥ 0 and/or
b ≥ 0. Are any restrictions on x and/or y needed (possibly different restrictions for
different parts of the proposition)? If so, what?

Remark 6.114 (Rational exponents) Proposition 6.112 shows that Definition 6.111
is consistent with prior definitions (e.g. from MAA 4211) of ar for rational exponents
r. For example, for a > 0 and n a positive integer, Proposition 6.112(iv) shows that
(a1/n)n = an/n = a. Since the function x 7→ xn is strictly increasing on (0,∞), a1/n is
therefore the unique positive real number c such that cn = a, i.e. the number that in
MAA 4211 we defined to be the (positive) nth root of a. Similarly, if p, q are integers and
q 6= 0, Proposition 6.112 shows that, consistently with prior definitions of “ap/q”, we have

(a1/q)p = ap/q = (ap)1/q. (6.79)

However, Definition 6.111 gives a much “cleaner”, if less intuitive, definition of ar for
r ∈ Q than does taking either the first or second equality in (6.79) to be the definition
of ap/q, because a rational number does not have a unique expression as a quotient of
integers; e.g. 2

3
= 16

24
= −42
−63 . When we attempt to use (say) the first equality in (6.79)

as the definition of ap/q when p, q are positive integers, we must do one of the following
in order to ensure that ap/q is well-defined: (1) require that the exponent be expressed
in “lowest terms”, i.e. with p and q having no common divisor greater than 1, or (2)
show that if p

q
= p′

q′
, where p, q, p′, q′ are positive integers, then (a1/q

′
)p
′

= (a1/q)p. (Since

every rational number can be expressed in lowest terms, (2) can be reduced to the case in
which p′ = kp and q′ = kq for some positive integer k.) Approach (1), however, becomes
insufficient the moment we try to show that rational exponents obey property (ii) in
Proposition 6.112, based only on the algebra of integer exponents and on a definition of
ap/q that requires p and q to be relatively prime. For example, 1

5
+ 3

10
= 1

2
, but you will not

likely succeed in showing that a1/5a3/10 = a1/2 without knowing that a1/5 = (a1/10)2 and
that (a1/10)5 = a1/2. Similarly, you will have difficulty showing that 20.6 > 20.5 without
knowing that (21/5)3 = (21/10)6 and that 21/2 = (21/10)5. Thus, if we attempt to take (6.79)
as the definition of ar for rational non-integer r, then to obtain the results of Proposition
6.112 even just for rational exponents, based on knowing them for integer exponents, we
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are forced to prove (at least) that (a1/kq)kp = (a1/q)p for all positive integers p, q, and k.
This is not difficult to prove, but the necessity of proving it can’t be avoided if we attempt
to use one of the equalities in (6.79) as the definition of ar for non-integer rational r. N

Remark 6.115 You may be accustomed to thinking that the algebraic rules in Proposi-
tion 6.112 are “obvious”, even though you likely have been using one of the equalities in
(6.79) as the definition of ar when r is rational, positive, and expressed in lowest terms,
and have likely been taking Proposition 6.112(iii) as the definition of ar when r is rational
and negative. There is nothing incorrect about these prior definitions. However, as Re-
mark 6.114 shows, if we use these prior definitions then the algebraic rules in Proposition
6.112 are not at all obvious once we leave the realm of integer exponents. We’re simply
so used to these rules that we may forget that there was ever anything non-obvious about
them. N

Remark 6.116 (Irrational exponents, part 1) Modern students, having grown up
with pocket calculators that have an “xy ” button on them, may be not be conscious of
the fact that there is nothing obvious about what an expression like “2

√
2” should mean.

We can use (6.79) to define what it means to raise a number to a rational exponent, but
this equation says nothing about irrational exponents.

Let r be an irrational number. We may attempt to define ar in an ad hoc manner,
using the decimal expansion of r as a sequence in Q approaching r from below (e.g. using
the fact that

√
2 is the limit of a sequence 1, 1.4, 1.41, 1.414, 1.4142, . . . ), and tentatively

defining ar to be the limit of this sequence. Why should the limit exist? If we first do the
work mentioned in Remark 6.114, we can then show that this sequence is monotone and
bounded, hence convergent. But that’s not entirely satisfying (nor can it be rigorously
justified early in Calculus 1, let alone prior to calculus): should the value of the number
ar depend on the fact that humans have 10 fingers (the reason that we chose the decimal
expansion of r)? For rational exponents there is no such dependence, so we would certainly
hope that there is none for irrational exponents either. This leads us to want to prove at
least the following: if (rn)∞n=1 is an increasing sequence of rational numbers approaching
r, does limn→∞ a

rn is independent of the choice of the sequence (rn).

Even this is not wholly satisfying. What if we had chosen a sequence (rn) that
decreases to r instead of increasing to r? (For example, if r = −

√
2, the sequence

−1,−1.4,−1.41,−1.414,−1.4142, . . . is a decreasing sequence.) What if we had chosen
a non-monotonic sequence (rn) with limit r? Do we always get the same limit? Using
(6.79) we can, indeed, prove that limn→∞ a

rn exists for every sequence in Q converging to
r, and that the value of this limit is independent of the choice of sequence (rn).14 Using
this limit to define ar, we then have a definition of ar that is valid for all real r and all

14But the proofs of these statements are far beyond the level at which today’s students are generally
taught this approach to defining irrational powers. An “it can be shown” statement is required, and it’s
for something that really can’t be shown at the level of Calculus 1.
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a > 0. Can we then prove Proposition 6.112 based on this approach? Yes, but still more
work is involved, and some questions with non-obvious answers have to be addressed. By
contrast, when we use Definition 6.111 to define ar for all real r, we have a definition
that works simultaneously for rational and irrational exponents, that looks identical for
all real exponents, and that renders the proof of Proposition 6.112 essentially trivial. N

Definition 6.117 The number e ∈ R is defined by e = exp(1). N

From Definitions 6.111 and 6.117, we immediately have

ex = exp(x)

for all x ∈ R.

Proposition 6.118 Let a, r ∈ R, with a > 0. The function R → R defined by x 7→ ax,
and the function (0,∞) → R defined by x 7→ xr, are differentiable, and their derivatives
are given by the following formulas:

(i) d
dx
ax = ax log a.

(ii) d
dx
xr = rxr−1.

Proof: (i) Define f, g : R → R by f(x) = ax and g(x) = x log a. Then, by definition,
f = exp ◦g. Since exp and g are differentiable, the Chain Rule Theorem implies that f is
differentiable and that f ′(x) = exp′(g(x))g′(x) = exp(g(x)) log a = ax log a.

(ii) Define f, g : R → R by f(x) = xr and g(x) = r log x. Then, by definition,
f = exp ◦g. Since exp and g are differentiable, the Chain Rule Theorem implies that f
is differentiable and that f ′(x) = exp′(g(x))g′(x) = exp(g(x)) r

x
= xr r

x
. Using Proposition

6.112(ii)–(iii), this last expression equals rxr−1.

Remark 6.119 (Exponential and logarithm functions) For each a > 0, the func-
tion x 7→ ax may be called the exponential function with base a. All such functions are
called “exponential functions”. In this terminology, the function exp is the exponen-
tial function with base e. This is the function that is meant when the terminology “the
exponential function” is used (properly).

Note that for any k ∈ R, akx = (ak)x, so every function of the form a 7→ akx is also
an exponential function.

Since ax = exp(x log a), and log a is positive for a > 1 and negative for a < 1,
Proposition 6.109 implies that the exponential function with base a is strictly increasing
if a > 1 and strictly decreasing if a < 1 (and is the constant function 1 if a = 1), and
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has range (0,∞) if a 6= 1. Hence for a 6= 1 this function has an inverse. This inverse
function is called the logarithm function with base a, and is denoted loga (which is best read
“log, base a” 15; the expression loga x := loga(x) is best read “log, base a, of x”). Any
such function is known as a logarithm function, or simply “log function”. Observe that
loge is the same as the natural logarithm function that we’re denoting simply as log, but
which you’re probably used to writing as “ln”. N

Exercise 6.23 Show that for a, b, x > 0 and a 6= 1 6= b,

logb x =
loga x

loga b
.

Thus, any logarithm function is a constant times any other.

Remark 6.120 (Power functions and their derivatives) For each r ∈ R, Defini-
tion 6.111 defines the expression “xr” for all x > 0, and, as we have seen, this definition
agrees with definitions we have previously learned for r ∈ Q. However, for certain r we do
not need x > 0 for the expression xr to be defined. (For example, if n is a positive integer,
basic algebra produces a definition of xn for all x ∈ R, and we then define x−n = 1

xn
for

all x 6= 0. We also define x0 = 1 for all x 6= 0, in order that the property in Proposition
6.112(iii) hold for all real a 6= 0 and all integer exponents. For odd integers n, every real
number has a unique nth root, so we may define x1/n for all real x.) For each r ∈ R, and
any set U ⊂ R such that x 7→ xr is defined for all x ∈ U , the function U → R given by
x 7→ xr is called a power function, or the rth-power function. (Of course, for certain r, we
have other names as well, e.g. the squaring function, for r = 2 and the cube-root function
for r = 1/3.) We still use the name “(rth-)power function” (or these other names) if the
codomain R is replaced by any set containing {xr : x ∈ U}, as in “the squaring function
R→ [0,∞)” or “the cube-root function (8,∞)→ (2,∞)”.

The remainder of this Remark is optional reading; the student may skip to
Remark 6.121.

In Calculus 1, one of the first things we learn is that for positive integers r,

d

dx
xr = rxr−1; (6.80)

15This is one of two common ways that the notation “loga” is read. The other, “log to the base a”,
appears to be idiomatic—it makes no sense grammatically, unlike alternatives such as “log from base a”
or “log with base a”—but is the terminology used in the classic textbook [11] by Thomas, from which
many current mathematicians learned calculus. Based on the terminology “raising to a power”, which
(at least for integer exponents) is probably much older than any terminology for logs with bases other
than 10, if y = ax there is logical justification to say that “x is the logarithm of y from the base a,” or
that “x is the log, from the base a, of y.” By contrast, if we apply conventional rules of grammar and
usage, “log to the base a” is not consistent with the terminology for powers, or with any other uses of
“to” in English.
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to derive this fact we use the Binomial Theorem. We also learn that the derivative of a
constant function is 0, so that (6.80) holds for r = 0 as well (on the domain R \ {0}), not
as a consequence of the Binomial Theorem, but because x0 has been defined to be 1 for
x 6= 0. In a good Calculus 1 course16, we learn progressively that (6.80) holds for more
and more exponents, until we have shown that it is true for all rational exponents:

1. By one of several methods, we learn that

d

dx
x−1 = −x−2, (6.81)

which is (6.80) for r = −1. Simple methods by which (6.81) can be shown, without
using any “laws of exponents” for anything other than integer exponents (the only
exponents for which it is obvious that rules like Proposition 6.112(ii), (iv), and (v)
are valid), are:

(a) Direct calculation: defining f : R \ {0} → R by f(x) = x−1, we compute

f ′(x) = lim
h→0

1
x+h
− 1

x

h
= lim

h→0

x−(x+h)
x(x+h)

h
= lim

h→0

−1

x(x+ h)
=
−1

x2
.

(b) First learning the quotient rule, then computing

d

dx

1

x
=
x d
dx

(1)− 1 d
dx

(x)

x
=
x · 0− 1

x2
= −x−2.

(Method (a) is really a special case of the proof of the quotient rule, so it is not
entirely different from method (b).)

2. By one of several methods, we learn that for all positive integers n,

d

dx
x−n = −nx−n−1 (6.82)

on R \ {0}, which is (6.80) for r = [negative integer]. Simple methods by which
(6.82) can be shown are, without using any “laws of exponents” for anything other
than integer exponents, are:

(a) First learning the quotient rule, then computing

d

dx

1

xn
=
xn d

dx
(1)− 1 d

dx
(xn)

(xn)2
=
xn · 0− nxn−1

x2n
= −nx−n−1.

16“Good”, as defined by the writer of these notes.
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(b) First establishing (6.81), then learning the Chain Rule, and then computing

d

dx
x−n =

d

dx
(xn)−1 = −(xn)−2

d

dx
(xn) = −(x−2n)nxn−1 = −nx−n−1.

Combining (6.82) with the previously-established cases of (6.80), we have now
learned that (6.80) holds for all integer exponents.

3. We show, by one of several methods, that for positive integers n, the function
x 7→ x1/n is differentiable on (0,∞), and compute that

d

dx
x

1
n =

1

n
x

1
n
−1. (6.83)

on this interval. Two methods by which (6.82) can be shown, without using any
“laws of exponents” for anything other than rational exponents, are:

(a) Proving the “ ‘Baby’ Inverse Function Theorem” (see Remark 6.110), and
then applying it to h : x 7→ xn. This shows that the function f : x 7→ x1/n is
differentiable and that

d

dx
x1/n = f ′(x) =

1

h′(f(x))
=

1
d
dy
yn
∣∣
y=x1/n

=
1

n(x
1
n )n−1

=
1

n(x1−
1
n )

=
1

n
x

1
n
−1.

(b) Restricting attention to n ≥ 2 (sufficient, since (6.83) has been proven already
for n = 1), showing first that f : x 7→ x1/n is continuous on (0,∞)), and then
using the algebraic identity bn−an = (b−a)(bn−1 +bn−2a+bn−3a2 + · · ·+an−1)
(for a, b,∈ R) to compute
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f ′(x) = lim
h→0

(x+ h)
1
n − x 1

n

h

= lim
h→0

[
(x+ h)

1
n − x 1

n

] [{
(x+ h)

1
n

}n−1
+
{

(x+ h)
1
n

}n−2
x

1
n + · · ·+ (x

1
n )n−1

]
h

[{
(x+ h)

1
n

}n−1
+
{

(x+ h)
1
n

}n−2
x

1
n + · · ·+ (x

1
n )n−1

]

= lim
h→0

{
(x+ h)

1
n

}n
− (x

1
n )n

h

[{
(x+ h)

1
n

}n−1
+
{

(x+ h)
1
n

}n−2
x

1
n + · · ·+ (x

1
n )n−1

]
= lim

h→0

(x+ h)− x

h

[{
(x+ h)

1
n

}n−1
+
{

(x+ h)
1
n

}n−2
x

1
n + · · ·+ (x

1
n )n−1

]
= lim

h→0

1{
(x+ h)

1
n

}n−1
+
{

(x+ h)
1
n

}n−2
x

1
n + · · ·+ (x

1
n )n−1

=
1{

x
1
n

}n−1
+
{
x

1
n

}n−2
x

1
n + · · ·+ (x

1
n )n−1︸ ︷︷ ︸

n terms

=
1

nx1−
1
n

=
1

n
x

1
n
−1.

If n is odd, so that x1/n is defined for all x, the methods in (a) and (b) extend from
the domain (0,∞) to the domain R \ {0}.

4. Having established (6.80) for the cases in which n is an integer or the reciprocal of
a positive integer, we apply the Chain Rule Theorem to generalize to other rational
exponents, as follows17: for an arbitrary rational number r = m

n
, where m,n are

17In our good calculus course, we do not investigate other exponents until we have proven the Chain
Rule Theorem (CRT). However, once we have established the CRT, an alternative approach to deriving
(6.80) for general rational exponents that does not require that we first handle reciprocal-integer exponents
separately, is as follows: (1) Introduce implicit differentiation (which depends crucially on the chain rule).
(2) State the Implicit Function Theorem (for real-valued functions of a single real variable), advising the
student that the proof is beyond the scope of a Calculus 1 course. (3) For an arbitrary rational number
r = m

n , where m,n are integers and n > 0, show that the Implicit Function Theorem implies that the
equation yn = xm (with (x, y) ∈ (0,∞) × (0,∞)) defines y as a differentiable function of x on (0,∞),
hence that the function x 7→ xm/n is differentiable on (0,∞). (4) Implicitly differentiate “yn = xm” with
respect to x, and then apply rules of rational exponents, to deduce that d

dxx
m/n = dy

dx = m
n x

m/n−1.
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integers and n > 0, we have

d

dx
xr =

d

dx
(x

1
n )m = m(x

1
n )m−1

d

dx
x

1
n = m(x

1
n )m−1

1

n
x

1
n
−1 =

m

n
x
m−1
n

+ 1
n
−1 = rxr−1.

In our good Calculus 1 course, we have now shown that (6.80) is true for all rational
exponents, using no laws of exponents that we did not know how to prove in high school.
But our method of proof was different for different types of rational exponents. This
strongly suggests that there must be some underlying principle, undiscovered as yet, that
would give a unified derivation of (6.80) for all rational exponents.

The proof we have given of Proposition 6.118(ii) is exactly this unified derivation;
moreover, it works equally well for all real exponents, whether rational or irrational.

Since the rationals are dense in the reals, we could reasonably conjecture now that
(6.80) holds for all real exponents. It would have been absurdly bold to make such a
conjecture based only on knowing that (6.80) holds for nonnegative integer exponents. N

Remark 6.121 (Irrational exponents, part 2) Suppose that, instead of using Defi-
nition 6.111 to define irrational powers of positive numbers, we have defined them an
“elementary” way, using a limit-procedure such as those discussed in Remark 6.116 (as-
suming we have already defined rational powers by elementary means, the way we would
in high school or in MAA 4211, rather than by Definition 6.111). Assume that we have
done this in the best possible way, showing that for any a > 0 and any rational sequence
(rn)∞n=1 converging to r, (i) limn→∞ a

rn exists and (ii) the value of this limit is independent
of the choice of sequence (rn). Finally, suppose we have shown that the derivative-formula
(6.80) holds for rational exponents, just based on these elementary, intuitive definitions.
To then show that (6.80) is true (with this value of r) we must do something like the
following:

1. Choose a sequence of rational numbers (rn)∞n=1 converging to r.

2. For fixed x > 0, write down the following computation, which we will do in “shoot
first and ask questions later” form:

lim
h→0

(x+ h)r − xr

h
= lim

h→0

(
lim
n→∞

(x+ h)rn − xrn
h

)
(6.84)

?
= lim

n→∞

(
lim
h→0

(x+ h)rn − xrn
h

)
(6.85)

= lim
n→∞

(
d

dx
xrn
)

= lim
n→∞

rnx
rn−1

?
= rxr−1 . (6.86)
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If we can justify equalities (6.85) and (6.86), we will have shown that the rth-power
function is differentiable on (0,∞), and that its derivative is the function x 7→ rxr−1.

Justifying (6.86) is no problem: (rn−1)∞n=1 is a rational sequence converging to r−1, so,
by what we’re assuming we’ve already proven about our elementary definition of irrational
powers, xrn−1 converges to xr−1. Since (rn) converges to r, one of our basic results about
real-valued sequences shows that the sequence (rnx

rn−1) converges to rxr−1. We can do all
this without ever setting foot in Advanced Calculus; the fact that “the limit of a product
is the product of the limits” (for convergent real-valued sequences) can easily be proven
even in the most elementary treatment of sequences, such as in Calculus 2.

But justifying the interchange-of-limits equation (6.85) is another matter entirely.
The entire notion of “interchange of limits” is far beyond the level of Calculus 1. To this
writer’s knowledge, justifying (6.85) is impossible at the level of Calculus 1, and would
even be difficult in Advanced Calculus without relying on the fact that the elementary
definition of ar for rational r gives the same value that Definition 6.111 gives.

The (once standard) approach to defining exponentiation presented earlier in this
section is a triumph of calculus, a true gem.18 It unifies the definitions of ar for positive
integer, negative integer, non-integer rational, and irrational r; Definition 6.111 is the same
for all exponents. It leads easily to the derivative formula (6.80) for all real exponents.
By showing that Definition 6.111 agrees with the “elementary” definition for rational
exponents, we see why our elementary derivations of d

dx
xr for rational r (the optional

reading in Remark 6.120) had to keep giving the same formula for all exponents. With
Definition 6.111, our proven continuity of the function exp guarantees that for any real
a > 0, any real number r, and any rational (or even real) sequence (rn) converging to
r, the sequence (arn) converges to a limit that is independent of which sequence (rn) we
choose. And at the core of all this were two major theorems from the theory of integration:

18This may be difficult for modern students to appreciate, especially if they’ve been taught out of an
“early transcendentals” calculus textbook. Calculus textbooks that define exponential functions early,
through a “filling in the holes in the graph” idea—the same idea as the limit-procedures discussed in
Remark 6.116—rather than waiting until the groundwork has been laid for Definition 6.111, often say
shortly after deriving (6.80) for non-negative integer exponents that “We will show later” that (6.80)
holds for all real r. These textbooks slip under the rug the fact that they do not derive (6.80) from
their first definition of xr. Rather, they wait until they have redefined xr using Definition 6.111, after
which they derive (6.80) exactly as in the proof of Proposition 6.118. The “derivation” of (6.80) in at
least one popular early-transcendentals textbook starts by writing “xr = (eln x)r = er ln x ”, and then uses
the Chain Rule to compute the derivative. But the reasoning is completely reversed from the correct
logic! Starting with “xr = (eln x)r = er ln x ” suggests that xr = er ln x because (xb)c = xbc for all real
b, c. The truth is exactly the opposite: “xr = er ln x” is the definition of xr, a definition from which we
derive the fact that (xb)c = xbc (a fact that, in “early transcendentals” textbooks, is often relegated to
an appendix).

There is nothing wrong in a student’s using the familiar formula (xb)c = xbc (familiar for rational expo-
nents only) as a mnemonic device to help remember that xr = er ln x, but the above so-called derivation
encourages the student to think, wrongly, that this formula for xr is a consequence of “(xb)c = xbc ”.
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the integrability of continuous functions (Theorem 6.53) and the Fundamental Theorem
of Calculus (in the form of Theorem 6.62).

6.11 Index for notation and terminology

• additivity of the (Riemann) integral: property expressed by Proposition 6.55

• B([a, b]): Notation 6.21

• χB; characteristic function of a subset B: Definition 6.37

• common refinement of two partitions: Definition 6.49

• continuously differentiable function: Definition 6.73

• ∆j(P ); ∆j : Notation 6.3

• Func([a, b], V ): Notation 6.81

• “Fundamental Theorem of Calculus”: a name attached to several related theorems,
specifically Theorems 6.62, 6.64, and 6.65; see also Remark 6.69

• integrable function (i.e. Riemann-integrable function): Definition 6.6; Remark 6.14;
Definition 6.79

• lower (Riemann) integral: Definition 6.48

•
∫ b
a
f ;

∫ b
a
f(x) dx; integral of a (Riemann) integrable function on [a, b]: Definition

6.8; Definition 6.80

•
∫̄ b
a
f (lower Riemann integral): Definition 6.48

•
∫̄ b
a
f (upper Riemann integral): Definition 6.48

• L(f ;P ); Lδ(f): Definition 6.22

• lower sum: Definition 6.22

• P([a, b]); Pδ([a, b]): Notation 6.13

• partition: Definition 6.1

• pointed partition; pointing of a partition: Definition 6.4

• R([a, b]): Notation 6.7

• R([a, b], V ): Notation 6.81
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• refinement of a partition: Definition 6.49

• Riemann sum: Definition 6.4; Definition 6.78

• S(f ;P, T ); S(f, P ): Definition 6.4; Definition 6.78

• Sδ([a, b]): Notation 6.13; Definition 6.78

• step function: Definition 6.42

• “triangle inequality for integrals”: inequality (6.67)

• U(f ;P ); Uδ(f): Definition 6.22

• upper (Riemann) integral: Definition 6.48

• upper sum: Definition 6.22

• V ∗: Definition 6.86

• wid(P ); width of a partition: Definition 6.4
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