
MAA 4212, Spring 2020—Assignment 2’s non-book problems

B1. Let X and Y be metric spaces, (fn : X → Y )∞n=1 a sequence of functions, and
f : X → Y a function. Assume that there is a real-valued sequence (c(n))∞n=1 such that
(i) for all n ∈ N and x ∈ X, dY (fn(x), f(x)) ≤ c(n), and (ii) limn→∞ c(n) = 0. Prove
that (fn) converges uniformly to f .

Thus, to prove that a sequence (fn) converges uniformly to a given function f , it
suffices to find, for each n, a uniform upper bound c(n) on the distances dY (fn(x), f(x))
(where “uniform” means “independent of x”), with the property that c(n)→ 0 as n→∞.
In practice, this is virtually always how uniform convergence is shown (for a sequence of
functions that does converge uniformly). For example, on the previous assignment you
probably did Rosenlicht problem IV.34(a) this way.

B2. Prove the following lemma, which has many uses:

Lemma 0.1 (“Substitution lemma for limits”) Let X, Y, Z be metric spaces,
let U ⊂ X, let V ⊂ Y , let x0 ∈ X, let y0 ∈ Y , and assume that x0 and y0 are clus-
ter points of U and V respectively. Let f : U → Y and g : V → Z be functions for which
f(U \ {x0}) ⊂ V , and assume that limy→y0 g(y) exists and that limx→x0 f(x) = y0. Then

lim
x→x0

g(f(x)) = lim
y→y0

g(y). (1)

Some comments about this lemma:

(1) Note that above, as in any statements involving expressions such as
“limx→x0 f(x)” and “limy→y0 g(y)”, f and g do not need to be defined at x0 and
y0 (respectively), but are allowed to be defined there. If x0 ∈ U and f(x0) ∈ V ,
that’s fine and dandy; these are just properties that have no bearing on the
limits in the lemma. All that matters about the domains and codomains f
and g is that x0 and y0 be cluster points of the corresponding domains (so
that the notions of “limx→x0 f(x)” and “limy→y0 g(y)” are defined) and that
f(U \ {x0}) ⊂ domain(g) (so that g(f(x)) is defined for all x ∈ U \ {x0}). In
fact, the latter condition can be weakened to: f(BU

δ (x0) \ {x0}) ⊂ domain(g)
for δ > 0.

(2) If we were to replace f and g in Lemma 0.1 by functions f : X → Y and
g : Y → Z that are continuous at x0 and y0 respectively, and for which
y0 = f(x0), then the right-hand side of equation (1) would reduce to g(f(x0)).
Equation limy→y0 g(y) would simply be saying that g◦f is continuous at x0—a
fact we’ve previously proven.

(3) Observe that Lemma 0.1 is similar in spirit to one direction of the “sequential
characterization of limits of functions”. If we were to replace f by a function
from N to domain(g)—i.e. a sequence (yn)∞n=1 in domain(g)—and assume that
this sequence converges to y0, the statement analogous to equation (1) would
then be limn→∞ g(yn) = limy→y0 g(y).
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(4) Two simple examples. Suppose that (i) U ⊂ R is an open interval contain-
ing a point x0 and we are given a function g : U \ {x0} → R, or (ii) U ⊂ R
is an open interval containing 0 and we are given a function g : U \ {0} → R.
It is easy to prove directly from “ε-δ” definitions that in instance (i) we have
limx→x0 g(x) = limh→0 g(x0 + h), and that in instance (ii), for any nonzero
c ∈ R we have limx→0 g(cx) = limx→0 g(x). However, we can also obtain these
facts as a corollaries (or special cases) of Lemma 0.1. The only subtlety is that
in (i) and (ii) we have not assumed that the limit of g exists (as x → x0 or
as x→ 0, accordingly), whereas Lemma 0.1 does have such a hypothesis. But
recall that by convention, in the absence of any assumption that either of the
relevant limits exists, a statement of the form “limit #1 = limit #2” means
that, if either limit exists, then so does the other, in which case the limits are
equal. (Equivalently: either both limits exist and are equal, or neither exists.)
In instance (ii), if we assume existence of limx→0 g(x) (think “limy→0 g(y)” in
the notation used in Lemma 0.1) and apply the lemma with f(x) = cx, we
obtain existence of limx→0 g(cx). If we assume existence of limx→0 g(cx) and
apply the lemma with f(x) = x/c, we obtain existence of limx→0 g(x). (And,
of course, under either assumption we obtain the equality of limits.) Similar
considerations apply in instance (i).

Exercises on the Mean Value Theorem

All of the exercises below (though not all parts of them) make use of the Mean
Value Theorem (MVT) or its corollaries, in one form or another, but some require you
to use other theorems in addition. You may assume that the trigonometric and inverse
trigonometric functions have the derivatives you learned in Calculus I-II-III.

B3. Let I ⊂ R be an open interval, and f : I → R a function.

(a) Let x0 ∈ I. Prove that if f is differentiable at x0, then f is Lipschitz at x0.

(b) Prove that if f is differentiable, and the function f ′ : I → R is bounded, then f
is Lipschitz.

(c) Prove that if f is differentiable, and the function f ′ : I → R is continuous, then f
is locally Lipschitz. (Recall from the terminology discussion in Assignment 1’s non-book
problems that a function g : X → Y , where X and Y are metric spaces, is locally Lipschitz
if for all p ∈ X, there exists δ > 0 such that the restriction of g to Bδ(p) is Lipschitz.)

B4. Let a, b ∈ R and assume a < b.
(a) Assume that f, g : [a, b) → R are continuous, and are differentiable on (a, b).

Assume also that f(a) = g(a) and that f ′(x) > g′(x) for all x ∈ (a, b). Prove that
f(x) > g(x) for all x ∈ (a, b).
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(b) Assume that f, g : (a, b] → R are continuous, and are differentiable on (a, b).
Assume also that f(b) = g(b) and that f ′(x) > g′(x) for all x ∈ (a, b). In this case, what
order-relation do f(x) and g(x) obey for x ∈ (a, b)?

In part (b), you are not being asked for a formal proof. Just state how, under the
hypotheses in (b), any inequalities you used for the proof in part (a) become modified,
and how this affects or does not affect the conclusion.

B5. Prove that
(a)

x

1 + x2
< tan−1 x < x for all x > 0,

and
(b) x < sin−1 x <

x√
1− x2

for 0 < x < 1.

(Here “tan−1” and “sin−1” are the inverse tangent and inverse sine functions, also known
as “arctan” and “arcsin” respectively.)

B6. Prove that, for all x > 0,

(a) sin x < x,

(b) cos x > 1− x2

2
, and

(c) x− x3

3!
< sinx < x− x3

3!
+
x5

5!
.

(Warning: if you try to use Taylor’s Theorem for this problem—which is not recommended—
don’t forget that numbers of the form “sin c” or “cos c” can be negative as well as positive!)

B7. In class we proved that if I ⊂ R is an interval, f : I → R is continuous on I and
differentiable on I◦, and f ′(x) > 0 for all x ∈ I◦, then f is strictly increasing (i.e. x1 < x2
implies f(x1) < f(x2)). In this problem we show that the requirement “f ′(x) > 0 for
all x ∈ I◦” can be somewhat relaxed without affecting the conclusion. Parts (a) and
(b) draw successively stronger conclusions by using successively weaker hypotheses. Each
problem-part is intended to help you do the next part, with the exception that part (d)
is independent of all the other parts.

(a) Let a, b ∈ R, with a < b. Let I be any of the intervals [a, b), (a, b], or [a, b].
Assume that f : I → R is continuous, is differentiable on the open interval (a, b), that
f ′(x) ≥ 0 for all x ∈ (a, b), and that f ′(x) = 0 for at most finitely many x ∈ (a, b). Prove
that f is strictly increasing on I.

(b) Let I ⊂ R be a nonempty interval (not necessarily bounded). Assume that f :
I → R is differentiable and that f ′(x) ≥ 0 for all x ∈ I. Let Z(f ′) = {x ∈ I | f ′(x) = 0}
(the zero-set of f ′), and assume that Z(f ′) has no cluster points in in I. (Note that if I is
not closed, we are not ruling out cluster points in I \I.) Prove that f is strictly increasing
on I.
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(c) Define f : R→ R by f(x) = x− sinx. Prove that f is strictly increasing.

(d) Let a, b ∈ R, with a < b. Assume that f : [a, b) → R is continuous, and
is strictly increasing on the open interval (a, b). Prove that f is strictly increasing on
[a, b). (Note that no differentiability is assumed; this problem-part is independent of the
previous parts.) Similarly, prove that if f : (a, b] → R is continuous, and is strictly
increasing on interval (a, b), then f is strictly increasing on (a, b]. As a corollary, deduce
that if f : [a, b] → R is continuous, and is strictly increasing on (a, b), then f is strictly
increasing on [a, b].

B8. Let I ⊂ R be an open interval, let x0 ∈ I, and f : I → R be a function that is con-
tinuous on I and differentiable on I \ {x0}. Assume that limx→x+0

f ′(x) and limx→x−0
f ′(x)

exist and are equal. Prove that f is differentiable at x0 and that f ′(x0) has the same value
as these two limits (and hence that f ′ not only exists at x0 but is continuous there).

Be careful not to assume that f has any properties not given in the hypotheses. For
example, don’t assume that f ′ is continuous on I \ {x0}.
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