
MAA 4212, Spring 2020—Assignment 5’s non-book problems

B1. Let (an)∞n=1, (bn)∞n=1 be sequences in R such that
∑

n an converges but
∑

n bn diverges.
Prove that

∑∞
n=1(an + bn) diverges.

B2. In class we proved the “alternating-series theorem”: if the terms of the real-valued
sequence (an) strictly alternate in sign, and |an| decreases monotonically to zero, then∑
an converges. Give a example showing that the monotonicity assumption in this the-

orem cannot be removed. (I.e. find a counterexample to the following statement: if the
sequence (an) strictly alternates in sign, and limn→∞ an = 0, then

∑
an converges.) Show

that the series in your counterexample does, in fact, diverge.

B3. Let (an)∞n=1 be a sequence in R for which
∑∞

n=1 an is conditionally convergent (i.e.
convergent but not absolutely convergent). Prove the following:

(a) There are infinitely many n for which an is positive, and infinitely many n for
which an is negative.

(b) Let (bi)
∞
i=1 be the subsequence of (an) consisting of the positive terms of an. (I.e.

bi = ani
, where ni is the index of the ith positive term of (an).) Similarly let (ci)

∞
i=1 be the

subsequence of (an) consisting of the negative terms of an. Show that both of the series∑∞
i=1 bi,

∑∞
i=1 ci diverge.

(c) Let r be any element of the extended reals Rext. Prove that there exists a
rearrangement of

∑∞
n=1 an that converges in Rext to r. In other words, prove that (i) for

any real number r, there exists a bijection f : N → N such that
∑∞

n=1 af(n) = r; (ii)
there exists a bijection f : N→ N such that

∑∞
n=1 af(n) diverges to∞ (which, definition,

means that the series converges in Rext to∞, and (iii) there exists a bijection f : N→ N
such that

∑∞
n=1 af(n) diverges to −∞.

B4. Let (a(m,n))(m,n)∈N×N be a “doubly indexed sequence” in R—a map A : N×N→ R,
where a(m,n) = A(m,n). It is sometimes useful to picture (a(m,n)) as an “infinity-by-
infinity matrix”. In this problem we are interested in attaching meaning to the notation
“
∑

m,n a(m,n),” also written “
∑∞

m,n=1 a(m,n)”. (Our notation “a(m,n)” can also be replaced
by any other notation for the values of a function N×N→ R, e.g. am,n or A(m,n).)

Definition. The doubly-indexed series
∑

m,n a(m,n) is absolutely convergent (or converges
absolutely) if there exists a bijection f : N → N ×N such that

∑∞
j=1 af(j) is absolutely

convergent. (Said more loosely, we are calling the doubly-indexed series absolutely con-
vergent if there is some order in which we can add up the entries of the “infinite matrix”
(a(m,n)) as the terms of an absolutely convergent singly-indexed series.)

(a) Prove that if
∑

m,n a(m,n) converges absolutely and f, g : N → N × N are bijec-
tions, then

∑∞
j=1 af(j) =

∑∞
j=1 ag(j). Hence if

∑
m,n a(m,n) converges absolutely, we can
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unambiguously define ∑
m,n

a(m,n) =
∞∑
j=1

af(j)

where f is any bijection N→ N×N.

(b) Explain why we should not attach any numerical value (in R) to the notation
“
∑

m,n a(m,n)” if this doubly-indexed series is not absolutely convergent. (Hint: Prob-
lem B3(c).)

(c) Prove that if
∑

m,n a(m,n) is absolutely convergent then
∑∞

m=1 a(m,n) converges for all
n ∈ N,

∑∞
n=1 a(m,n) converges for all m ∈ N, and

∑
m,n

a(m,n) =
∞∑
m=1

(
∞∑
n=1

a(m,n)

)
=
∞∑
n=1

(
∞∑
m=1

a(m,n)

)
.

(d) Let
∑∞

n=1 bn,
∑∞

n=1 cn be absolutely convergent. Prove that
∑

m,n bmcn is absolutely
convergent, and that ∑

m,n

bmcn =

(
∞∑
n=1

bn

)(
∞∑
n=1

cn

)
.

Remark. In the absolutely convergent case, enumerating N×N in the order

(1, 1)

(1, 2) (2, 1)

(1, 3) (2, 2) (3, 1)

...

leads us to ∑
m,n

a(m,n) =
∞∑
k=1

( ∑
n+m=k

a(m,n)

)
. (1)

One of the main reasons that the conclusions of problem B4 are important is the following
application to power series, in which the enumeration scheme in (1) appears naturally.
(For power series, we index the terms using N ∪ {0} rather than N, but aside from
the slight bookkeeping change this clearly makes no difference in the conclusions of B4.)
Suppose you are multiplying two polynomials together, say a0 + a1x + · · · + aNx

N (i.e.∑N
n=0 anx

n) and b0 + b1x + · · · + bMx
M (i.e.

∑M
m=0 bmx

m). After multiplying out, you
generally rewrite the result by grouping together all the terms with a given power of x,
which is the finite-series statement(

N∑
n=0

anx
n

)(
M∑
m=0

bmx
m

)
=

N+M∑
k=0

( ∑
n+m=k

anbm

)
xk.
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Since power series are absolutely convergent on the interiors of their intervals of con-
vergence, parts (a) and (d) imply that on the interior of the smaller of the intervals of
convergence of two power series centered at 0, you can multiply the series together just
as if they were polynomials (with infinitely many terms). For fun, you might try to show
the identity sin2 x+ cos2 x = 1 or sin x cosx = 1

2
sin(2x) or (ex)2 = e2x this way.

B5. Here is a True/False test. Note that statements (a) and (b) have a hypothesis that
is missing in statements (c) and (d).

(a) If (an) is a sequence of non-negative real numbers, and
∑

n an converges, then∑
n a

2
n converges.

(b) If (an) is a sequence of non-negative real numbers, and
∑

n an converges, then∑
n a

3
n converges.

(c) If (an) is a sequence of real numbers and
∑

n an converges, then
∑

n a
2
n converges.

(d) If (an) is a sequence of real numbers and
∑

n an converges, then
∑

n a
3
n converges.

Take this True/False test and prove your answers. You have already done a problem that
addresses statement (a); this statement is included primarily for purposes of comparison
with parts (b) and (c). You will probably find (c) a little more difficult than (a) and (b).
You will probably find (d) several orders of magnitude more difficult than (a), (b), or (c).
Think of (d) as extra credit rather than as a problem you are expected to be able to solve.

In the two problems below, which I may end up deferring to the next assignment if
you find the rest of the current assignment too time-consuming, you are allowed to use
your knowledge of trigonometric functions and their derivatives. In problem B7 you will
derive a fun fact with which you can impress people at parties.1

B6. (a) Let a, b ∈ R, a < b. Suppose g : (a, b) → R is differentiable. Prove that if g′

is bounded, then there exists a continuous extension of g to the closed interval [a, b] (i.e.
there exists a continuous function g̃ : [a, b]→ R that coincides with g on (a, b)).

(b) Prove that the integration-by-parts formula (Rosenlicht p. 133/#17) generalizes to
the case in which u is replaced by a function g satisfying only the hypotheses in part (a).
(In the Rosenlicht problem, u′ is assumed to exist and be continuous on an open interval
containing [a, b].)

(c) Suppose g : (0, π) → R is continuously differentiable and that g′ is bounded. Prove
that

lim
n→∞

∫ π

0

g(x) sin(nx) dx = 0.

(Hint: (a) and (b) come before (c). Suggestion: read part (d) before starting part (c).)

1Caution is advised if there’s anybody at the party whom you wish to date.

3



(d) Did part (c) involve interchanging the order of a limit as n → ∞ and an integral?
Would such an interchange even have been possible? Why or why not?

B7. In this problem, you are free to use the conclusion of the previous problem.
As you saw in Rosenlicht problem VII.10, the integral test (Rosenlicht problem VII.9)

implies that
∑∞

n=1 1/np (called the p-series) converges for all real p > 1. The proof of the
integral test can be used to give crude upper and lower bounds on the sum, but not its
exact value. In this problem you will end up computing the exact value of

∑
1/n2, by

roundabout means.

(a) Let f : [0, π] → R be a continuous function. Suppose that f(0) = f(π) = 0, and
that f ′′ exists on (0, π) and extends to a continuous function on [0, π]. For 0 < x < π,
define g(x) = f(x)/ sin(x). Prove that the limit of g′ exists at both endpoints of [0, π],
and hence that g′ extends to a continuous (and therefore bounded) function on [0, π].

Note: this problem is one of those rare instances in which even a real mathematician
might use l’Hôpital’s Rule.

(b) Let f be as in part (a). Prove that

lim
n→∞

∫ π

0

f(x)
sin(nx)

sin(x)
dx = 0.

(c) Verify that if n is any integer, then∫ π

0

x(π − x) cos(2nx) dx =

{
−π/(2n2), n 6= 0

π3/6, n = 0
.

(Note: for n 6= 0 the computation is simpler if you do not break the integral up into two
pieces, one for x2 cos 2nx and x cos 2nx.) Use this to prove that

∞∑
n=1

(∫ π

0

x(π − x) cos(2nx) dx

)
= −π

2

∞∑
n=1

1

n2
.

(d) Show that for all integers n ≥ 1,

cos(2x) + cos(4x) + cos(6x) + · · ·+ cos(2nx) =
1

2

(
sin((2n+ 1)x)

sin(x)
− 1

)
.

Use this to prove that

∞∑
n=1

(∫ π

0

x(π − x) cos(2nx) dx

)
= −1

2

∫ π

0

x(π − x)dx.

(e) Using the work above, determine the exact value of
∑∞

n=1
1
n2 .
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