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Some Notes on Multivariable Derivatives

1 Differentiability

Throughout these notes V and W are finite-dimensional1 vector spaces (of dimension
at least 1) with zero-elements 0V and 0W respectively, and with norms ‖ ‖V and ‖ ‖W
respectively. The subscripts on the zero-elements and norms will often be dropped when
context makes clear which zero-element (that of V , W , or R) or norm is intended.

Definition 1.1 Let U ⊂ V be an open set, let F : U → W (or F : U → Y , where Y ⊂ W
is an open set) be a function, and let p ∈ U . We say F is differentiable at p if F has a
good linear approximation near p, i.e. if there exists a linear transformation T : V → W
such that

lim
v→0V

‖F (p+ v)− F (p)− T (v)‖W
‖v‖V

= 0; (1.1)

equivalently, if for all ε > 0 there exists δ > 0 such that if v ∈ V and ‖v‖ < δ,

‖F (p+ v)− F (p)− T (v)‖W ≤ ε‖v‖V . (1.2)

We say that F is differentiable if F is differentiable at every point of U .
N

Note that (1.1) is equivalent to

lim
v→0V

F (p+ v)− F (p)− T (v)

‖v‖V
= 0W . (1.3)

Remark 1.2 The good linear approximation referred to in Definition 1.1 is the function
F̃ : q 7→ F (p)+T (q−p). This function is not linear in the sense of “linear transformation”,
but in the sense of “polynomial of degree at most 1”: if we choose bases for V and W ,
then the component functions of F̃ (relative to the chosen basis of W ) are polynomials of
degree at most 1 in the coordinate functions of V (relative to the chosen basis of V ). This
is the only instance in these notes in which “linear function” will mean anything other
than what “linear map” or “linear transformation” means in linear algebra. N

Claim 1.3 Let U, F, p be as in Definition 1.1. Then there exists at most one linear
transformation T : V → W such that (1.1) holds. In particular, if F is differentiable at
p then the linear transformation T in equation (1.1) is unique.

1Except in some remarks in which we relax this constraint.
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Proof: If linear transformations T1 and T2 are such that (1.1) holds, then for all v ∈ V

(T2 − T1)(v) = [F (p+ v)− F (p)− T1(v)]− [F (p+ v)− F (p)− T2(v)] .

Therefore, for all nonzero v ∈ V ,

F (p+ v)− F (p)− T1(v)

‖v‖
− F (p+ v)− F (p)− T2(v)

‖v‖
=

(T2 − T1)(v)

‖v‖
= (T2−T1)

(
v

‖v‖

)
,

since the linearity of T1 and T2 implies that T2−T1 is linear as well. Letting v → 0, using
the hypothesis that (1.3) is satisfied both with T = T1 and with T = T2, we deduce that

0W = lim
v→0

(T2 − T1)

(
v

‖v‖

)
.

Hence, by the “Substitution Lemma for limits”, for every unit vector e ∈ V we have

0 = lim
t→0+

(T2 − T1)

(
te

‖te‖

)
= (T2 − T1)(e).

Since every v ∈ V is a multiple of some unit vector, linearity implies that (T2−T1)(v) = 0
for all v ∈ V , hence that T2 = T1.

Definition 1.4 Let V,W,U, F and p be as above. Suppose F is differentiable at p. The
unique linear map T : V → W satisfying (1.1) is called the derivative of F at p, denoted
(DF )p or DF

∣∣
p

in these notes .

Remark 1.5 (Different meaning of “derivative”) The derivative of F at p, as de-
fined above, does not reduce to the “Calc 1 derivative”, i.e. the quantity that (even in
Advanced Calc) we have previously called the derivative of F at p in the case V = W = R.
The latter is a number F ′(p), not a linear transformation. However, there is a natural
one-to-one correspondence between real numbers and linear transformations R→ R:

R ←→ Hom(R,R),

c ←→ the linear map x 7→ cx,

i.e. the map “multiplication by c”. The derivative of F at p, as defined in Definition 1.4,
is the linear map “multiplication by F ′(p)” from R to R (see exercise below). Because
Definition 1.4 does not reduce to the familiar meaning of “derivative” in the case V =
W = R, some authors prefer to call the linear transformation T in (1.1) the differential
of F at p. N
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Exercise 1.1 Let V = W = R, and let all other notation be as in Definition 1.1. Show
that F is differentiable at p (as defined in Definition 1.1) if and only if F ′(p) exists, and
that in the differentiable case, the derivative DF |p is the linear map “multiplication by
F ′(p)” from R to R.

Remark 1.6 Recall that for any fixed n ∈ N, all norms on Rn are equivalent. As the
student should be able to show, it follows from this that the property of “differentiability
at p” and (in the differentiable case) the linear transformation DF |p are independent of
which norms are used on V and W . N

Example 1.7 If F : V → W is a linear map then at each point p ∈ U , DF
∣∣
p

= F

(“a linear map is its own derivative [at each point]”). This follows from the uniqueness
statement in Claim 1.3 and the fact if F is linear, then for all nonzero v ∈ V we have

F (p+ v)− F (p)− F (v)

‖v‖
= 0.

N

Remark 1.8 (“Truly advanced” calculus) Most of the “advanced calculus” that we
cover in MAA 4211–4212 is actually elementary calculus (Calculus 1-2-3), redone rigor-
ously via an introduction to analysis. One feature of this approach is that it prepares
you for more-advanced analysis, but there are only a few times in this course—almost all
crowded into the end—in which you really get a taste of more-advanced calculus. Defini-
tions 1.1 and 1.4 are the doorway to “truly advanced” calculus. Through these definitions
we are deepening the concept of derivative. We see, among other things, that linear algebra
is inextricably bound to this concept. What is defined in Definition 1.4 is the “grown-up
derivative”. This deeper concept of derivative (at a point) as a linear transformation
leads to a deeper understanding of various topics in calculus (including the Chain Rule,
as we will see later), and paves the way to generalizing calculus on R and Rn to calculus
on “nonlinear spaces” known as manifolds. Analysis is essential to proving most of the
theorems in calculus, but there are concepts in calculus that involve only rudimentary
analysis (e.g. the notion of of limit for functions between normed vector spaces), and
whose depth is not in the analytical details. N

Exercise 1.2 Let U ⊂ V be open, let p ∈ U , and let F1, F2, . . . Fk : U → W be functions
that are differentiable at p, and let c1, c2, . . . , ck ∈ R. Let F =

∑k
i=1 ciFi. Show that F is

differentiable at p, and that DF |p =
∑k

i=1 ciDFi|p .

Definition 1.9 Let Hom(V,W ) denote the space of linear maps V → W (a vector space
of dimension (dimV )(dimW )). For T ∈ Hom(V,W ), the operator norm of T , denoted
‖T‖op, is defined by

‖T‖op = sup
{v∈V : ‖v‖V =1}

‖T (v)‖W . (1.4)
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Note that the value of ‖T‖op may depend on the norms chosen on V and W .

Recall that every (a) linear transformation from one finite-dimensional normed vector
space to another is continuous, (b) in any finite-dimensional normed vector space V , the
unit sphere S(V ) := {v ∈ V : ‖v‖ = 1} is compact, and (c) any restriction of a continuous
function is continuous. Thus, in the setting of (1.4), the function S(V ) → R defined by
v 7→ ‖T (v)‖ is continuous (a composition of continuous functions), so the compactness of
S(V ) implies that this function achieves a maximum value. Thus the supremum in (1.4)
is finite (and is actually achieved; “sup” could be replaced by “max”).

Exercise 1.3 Show that, as the name and notation suggest, the operator norm is indeed
a norm on the vector space Hom(V,W ).

Exercise 1.4 Let T ∈ Hom(V,W ).

(a) Show that

‖T‖op = sup
{v∈V : v 6=0}

∥∥∥∥T ( v

‖v‖

)∥∥∥∥ = sup
{v∈V : v 6=0}

‖T (v)‖
‖v‖

.

(Above, the subscripts “V ” and “W” have been suppressed for easier reading, but
anywhere that norm-symbols appear without a subscript, there’s only one norm
that could be meant. For example, in the last fraction, the numerator is ‖(T (v)‖W
and the denominator is ‖v‖V .)

(b) Show that for all v ∈ V ,
‖T (v)‖ ≤ ‖T‖op ‖v‖. (1.5)

(c) Let (Z, ‖ ‖) be a third finite-dimensional normed vector space, and let S : V → Z
be a linear map. Show that ‖S ◦ T‖op ≤ ‖S‖op ‖T‖op.

Proposition 1.10 (Differentiability implies continuity) Notation as in Definition
1.1. If F is differentiable at p, then F is continuous at p.

Proof: Assume F is differentiable at p, and let T = DF |p. Let δ > 0 be such that for all
v ∈ Bδ(0V ) we have ‖F (p+ v)−F (p)−T (v)‖ ≤ ‖v‖; such δ exists by Definitions 1.1 and
1.4. Then for all q ∈ Bδ(p), writing v = q − p we have ‖v‖ < δ, so

‖F (q)− F (p)‖ = ‖F (p+ v)− F (p)‖ ≤ ‖F (p+ v)− F (p)− T (v)‖+ ‖T (v)‖
≤ ‖v‖+ ‖T‖op‖v‖
= (1 + ‖T‖op)‖q − p‖.

Thus F is Lipschitz at p, hence continuous at p.
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Remark 1.11 The condition that V and W are finite-dimensional can be relaxed, at
the cost of adding extra conditions elsewhere. If we do not assume that V is finite-
dimensional, then Definition 1.1 in the present handout is modified by replacing “linear
transformation” by “bounded linear transformation” (see Definition 1.1 in the handout
“Some notes on normed vector spaces”). Note that boundedness of a linear transformation
T : V → W is equivalent to the condition that ‖T‖op be finite. If there are any unbounded
linear transformations from T : V → W—equivalently, such that ‖T‖op = ∞—then by
definition of “norm”, the extended-real-valued function ‖ ‖op can’t be a norm on the space
of all linear transformations from V to W . However, it’s not hard to show that the set of
all bounded linear transformations from V to W is a vector space—a vector subspace of
the space of all linear transformations from V to W—and that ‖ ‖op is a norm on this
subspace.

If dim(V ) is finite then every linear transformation from V to W is bounded, re-
gardless of whether dim(W ) is finite. Conversely, if dim(V ) =∞ then there always exist
unbounded linear transformations from V to W (unless W = {0}).

With “linear transformation” replace by “bounded linear transformation” in Defi-
nition 1.1, the proof of Proposition 1.10 carries through verbatim to the case in which
dim(V ) =∞.

2 Chain Rule

For the discussion below, it is absolutely critical to remember that “derivative”
in these notes has the meaning given in Definition 1.4, not the Calculus 1
meaning. Otherwise you will entirely misinterpret the Chain Rule as stated
below.

We now add a third finite-dimensional normed vector space (Z, ‖ ‖Z) to the picture
so that we can talk about compositions of differentiable functions, and state and prove the
Chain Rule Theorem for functions between (subsets of) finite-dimensional vector spaces.

There are several ways of stating the Chain Rule. One way is better than all the
others:

The derivative of a composition is the composition of the derivatives.

Some precision is sacrificed in this statement in order to emphasize the elegance and
simplicity of the principle. The precise statement is equation (2.1) in the Chain Rule
Theorem below.

Theorem 2.1 (Chain Rule Theorem) Let V,W,Z be finite-dimensional vector spaces.
Let U1 ⊂ V, U2 ⊂ W be open sets, let F : U1 → U2, G : U2 → Z be functions, and let
p ∈ U1. Assume that F is differentiable at p and that G is differentiable at F (p). Then
the composition G ◦ F is differentiable at p, and

D(G ◦ F )
∣∣
p

= DG
∣∣
F (p)
◦DF

∣∣
p
. (2.1)
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Proof: Let T = DF
∣∣
p
, q = F (p), and S = DG

∣∣
q
. Let ε > 0. Let δ1, δ2 > 0 be such that

for all w ∈ W and v ∈ V ,

if ‖w‖ < δ1 then q + w ∈ U2 and ‖G(q + w)−G(q)− S(w)‖ ≤ ε‖w‖ (2.2)

and

if ‖v‖ < δ2 then p+ v ∈ U1 and ‖F (p+ v)− F (p)− T (v)‖ ≤ min{ε, 1}‖v‖; (2.3)

such δ1 and δ2 exist by Definitions 1.1 and 1.4.
Let δ3 = min{δ2,

δ1
1+‖T‖op}, and let v ∈ V be any element with ‖v‖ < δ3. Then

‖v‖ < δ2, so by (2.3),
‖F (p+ v)− F (p)− T (v)‖ ≤ ε‖v‖ (2.4)

and, by the same argument as in the proof of Proposition 1.10,

‖F (p+ v)− F (p)‖ ≤ (1 + ‖T‖op)‖v‖ (2.5)

< (1 + ‖T‖op)δ3 ≤ δ1. (2.6)

Let w = F (p+v)−F (p); thus F (p+v) = F (p)+w = q+w. From (2.6) we have ‖w‖ < δ1,
so, by (2.2) and (2.5),

‖G(q + w)−G(q)− S(w)‖ ≤ ε‖w‖ ≤ ε(1 + ‖T‖op)‖v‖. (2.7)

Using (2.7), (2.4), and the linearity of S, we therefore have

‖(G ◦ F )(p+ v)− (G ◦ F )(p)− (S ◦ T )(v))‖ = ‖G(q + w)−G(q)− S(T (v))‖ (2.8)

≤ ‖G(q + w)−G(q)− S(w)‖+ ‖S(w)− S(T (v))‖
= ‖G(q + w)−G(q)− S(w)‖+ ‖S(w − T (v))‖
= ‖G(q + w)−G(q)− S(w)‖+ ‖S‖op ‖F (p+ v)− F (p)− T (v)‖ (2.9)

≤ ε(1 + ‖T‖op)‖v‖+ ‖S‖op ε‖v‖
= [(1 + ‖T‖op + ‖S‖op) ε]‖v‖. (2.10)

Since ε was arbitrary, it follows that G ◦ F is differentiable at p, with derivative S ◦ T .

Remark 2.2 The idea behind the proof above is the portion from (2.8) through (2.9):
starting with an arbitrary v, and writing “f(p + v) − f(p)” in place of w, we start with
the left-hand side of (2.8) and use the triangle inequality and the linearity of S to attain
(2.9). Then we work backwards to see what δ’s are needed in order to get from (2.9) to get
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“(constant × ε)‖v‖” in like (2.10).2 No cleverness is involved; the strategy is completely
natural. It is the more advanced concept of differentiability that makes this strategy so
easy to find; armed with Definitions 1.1 and 1.4, and Definition 1.9 (of which the inequality
(1.5) is a simple corollary), this strategy is the first thing we think of. This same natural
proof works perfectly well when restricted to the case V = W = R, giving us an alternate
proof of our older, single-variable version of the Chain Rule, without resorting to “pulling
out of a hat” the cleverly defined function in that earlier proof.

Furthermore, if we remove the finite-dimensionality assumption on V and W , and
modify Definition 1.1 by inserting the word “bounded” accordingly (see Remark 1.11),
then our proof of the Chain Rule still works, word for word, whereas “naive” generaliza-
tions of the V = W = R argument don’t even make sense. (For example, the lemma on
p. 196 of Rosenlicht would not make sense if En were replaced by an infinite-dimensional
vector space.)

3 Directional derivatives

Definition 3.1 Let U be an open subset of V , let p ∈ U and let F : U → W (with no
differentiability of F assumed). For v ∈ V , the (generalized) directional derivative of F
at p in direction v is

(DpF )(v) =
d

dt
F (p+ tv)

∣∣∣∣
t=0

= lim
t→0

F (p+ tv)− F (p)

t

if this limit exists. Note that (DpF )(v), when it exists, is an element of W .

We have inserted “(generalized)” since, unlike in Calculus 3, there is no requirement
that v be a unit vector; v can even be the zero vector.

Remark 3.2 Let F and p be given. Trivially, (DpF )(0V ) = 0W , but the limit in Defini-
tion 3.1 may or may not exist for a given nonzero v, and may exist for some nonzero v’s
but not others. However, if v is a vector for which (DpF )(v) exists, then, as we are about
to show, (DpF )(w) exists for all multiples w of v, and we have the following homogeneity
property:

(DpF )(λv) = λ(DpF )(v) for all λ ∈ R. (3.1)

To establish (3.1), note that (3.1) holds trivially if λ = 0, while for λ 6= 0 we have

lim
t→0

F (p+ tλv)− F (p)

t
= λ lim

t→0

F (p+ λtv)− F (p)

λt
= λ(DpF )(v), (3.2)

using the “Substitution Lemma for limits”. N
2By this point in the course, everyone should understand ε-δ definitions—in particular, what the

quantifiers are telling us when written in the correct order and location—well enough to know that if for
all ε > 0 there exists δ > 0 such that [some stuff] is ≤ [any given constant] × ε, then for all ε > 0 there
exists δ > 0 such that [that stuff] is ≤ ε. Early in the course we would have gone back and rewritten the
proof, replacing the ε in (2.2) and (2.3) with ε

1+‖T‖op+‖S‖op
in order to get exactly ε‖v‖ in (2.10).
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Example 3.3 In Definition 3.1, consider the case V = Rn,W = R; thus F is a real-
valued function on an open set in Rn. Writing elements of Rn as column vectors, let
{ej}nj=1 be the standard basis of Rn (thus ej = (0, . . . , 1, . . . , 0)t, where the 1 in the jth

position is the only nonzero coordinate and where the superscript “t” denotes transpose),
and let {xj}nj=1 be the standard coordinate functions on Rn. Let p = (a1, . . . , an)t. Then
p+ tej = (a1, . . . , aj−1, aj + t, aj+1, . . . , an)t.

(DpF )(ej) =
d

dt
F (p+ tej)

∣∣∣∣
t=0

=
d

dt
F ((a1, . . . , ai−1, aj + t, aj+1, . . . , an)t)

∣∣∣∣
t=0

=
d

du
F ((a1, . . . , ai−1, u, ai+1, . . . , an)t)

∣∣∣∣
u=aj

=
∂F

∂xj
(p),

the partial derivative of F with respect to xj (at p), as defined the usual way. Thus,
partial derivatives are special cases of directional derivatives. N

Proposition 3.4 If F is differentiable at p then all directional derivatives of F exist at
p and

(DpF )(v)︸ ︷︷ ︸
directional derivative
at p in direction v

= DF
∣∣
p
(v)︸ ︷︷ ︸

derivative of F at p
evaluated at v

. (3.3)

Proof: Suppose F is differentiable at p and let T = DF
∣∣
p
. Then if v 6= 0,

lim
t→0

F (p+ tv)− F (p)

t
= lim

t→0


‖v‖ F (p+ tv)− F (p)− T (tv)

t‖v‖︸ ︷︷ ︸
→0 since F is differentiable at p

+ T (v)

 = T (v),

which is exactly equation (3.3). If v = 0, then both sides of (3.3) are zero. Thus (3.3)
holds in all cases.

Corollary 3.5 Let U ⊂ Rn be open, p ∈ U , let f : U → R be a function that is differen-
tiable at p, let {xj}nj=1 be the standard coordinates on Rn, and let

8



v =

 v1
...
vn

 ∈ Rn. Then

Df |p(v) =
n∑
j=1

∂f

∂xj
(p) vj (3.4)

= (
∂f

∂x1

(p), . . . ,
∂f

∂xn
(p))︸ ︷︷ ︸

1× n matrix

 v1
...
vn


︸ ︷︷ ︸

n× 1 matrix

, (3.5)

where matrix multiplication is used on the right-hand side of (3.5), and 1 × 1 matrices
are identified with real numbers.

Proof: Let {ej}nj=1 be the standard basis of Rn. Then v =
∑n

j=1 vjej. Using the linearity
of Df |p , Proposition 3.4, and Example 3.3, we therefore have

Df |p(v) =
n∑
j=1

vj Df |p(ej) =
n∑
j=1

vj (Dpf)(ej) =
n∑
j=1

vj
∂f

∂xj
(p),

yielding (3.4).

4 The case V = Rn,W = Rm

We now specialize to the concrete case V = Rn,W = Rm. For purposes of matrix
operations that will arise later, we treat elements of Rn and Rm as column vectors.
When this is inconvenient typographically, we will write column vectors as transposes of
row vectors. If (a1, . . . , an)t is in the domain of a function F defined on a subset of Rn,

we write simply F (a1, . . . , an) rather than F ((a1, . . . , an)t) or F


 a1

...
an


 .

Throughout this section, unless stated otherwise, {ei}ni=1 and {e′i}mi=1 denote the
standard bases of Rn and Rm, respectively, and {xi}ni=1 and {yi}mi=1 denote the standard
coordinate functions on Rn and Rm, respectively. For 1 ≤ i ≤ m, define ιi : R→ Rm by

ιi(s) = se′i = (0, . . . , 0, s, 0, . . . , 0)t,

where the s is in the ith slot.
Observe that each of the functions xi, yi, ιi defined above is a linear map.
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Definition 4.1 Let U ⊂ Rn be open, and let F : U → Rm be a function. For each
i ∈ {1, . . .m} let fi = yi ◦ F : U → R (the ith component function of F [with respect to
the standard basis of Rm]). Then, as is easily checked,

F =
m∑
i=1

ιi ◦ fi =
m∑
i=1

ιi ◦ yi ◦ F . (4.1)

We may write the first equality in (4.1) in the more familiar form

F =
m∑
i=1

fi e
′
i =

 f1
...
fm

 ,

with the understanding that this means F (p) =
∑m

i=1 fi(p) e
′
i for all p ∈ U . At any point

p for which all the partial derivatives ∂fi
∂xj

(p) exist (1 ≤ i ≤ n, 1 ≤ j ≤ m), we define the

Jacobian matrix of F at p to be the m× n matrix whose (ij)th entry is ∂fi
∂xj

(p):

JF (p) =


∂f1
∂x1

(p) ∂f1
∂x2

(p) · · · ∂f1
∂xn

(p)
∂f2
∂x1

(p) ∂f2
∂x2

(p) · · · ∂f2
∂xn

(p)
...

...
. . .

...
∂fm
∂x1

(p) ∂fm
∂x2

(p) · · · ∂fm
∂xn

(p)

 .

Example 4.2 Consider the case n = 1 in Definition 4.1. If the component functions
f1, . . . , fm of F are differentiable at t ∈ U , then the Jacobian matrix of F at t is the
simply the m× 1 matrix (= column vector) f ′1(t)

...
f ′m(t)

 ,

i.e. the vector F ′(t) (as we called it when we discussed differential equations, modulo the
choices of vector notation and upper/lower-case letters). N

Proposition 4.3 Let U, F, {fi}mi=1, and p be as in Definition 4.1. Then F is differentiable
at p if and only if each component function fi is differentiable at p, 1 ≤ i ≤ m. In the
differentiable case,

DF |p =
m∑
i=1

ιi ◦Dfi|p ; (4.2)
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equivalently,

DF |p(v) = JF (p)v for all v ∈ V, (4.3)

where matrix-multiplication is implicit on the right-hand side of this equation.

Thus, Proposition 4.3 yields the following important relation between derivatives and
Jacobians:

If F : U ⊂ Rn → Rm is differentiable at p ∈ U , then the derivative of F at
p is the linear map Rn → Rm given by multiplication by the Jacobian matrix
JF (p).

Said another way,

If F : U ⊂ Rn → Rm is differentiable at p ∈ U , then the Jacobian matrix
JF (p) is the matrix of the linear transformation DF |p : Rn → Rm with respect
to the standard bases of Rn and Rm.

For the case n = m = 1, we have already seen this fact in Remark 1.5. In this case,
the Jacobian matrix JF (p) is a 1 × 1 matrix whose sole entry is F ′(p). The linear map
x 7→ F ′(p)x is exactly multiplication by this 1× 1 matrix. Thus, the “Calc 1” derivative
of a function F : (U ⊂ R)→ R at p is the 1× 1 Jacobian JF (p).

Proof of Proposition 4.3: First suppose that fi is differentiable at p, 1 ≤ i ≤ m. Let
i ∈ {1, . . . ,m}. Since ιi is linear, Example 1.7 implies that ιi is differentiable and that
Dιi|fi(p) = ιi. Hence, by the Chain Rule Theorem, ιi ◦ fi is differentiable at p, and

D(ιi ◦ fi)|p = Dιi|fi(p) ◦Dfi|p = ιi ◦Dfi|p. (4.4)

Since (4.4) holds for each i, and F =
∑

i ιi ◦ fi, Exercise 1.2 implies the equality (4.2).
Conversely, suppose that F is differentiable at p, and let i ∈ {1, . . . ,m}. Then

fi = yi ◦ F . Since yi is linear, the same Chain Rule argument as above shows that fi is
differentiable at p.

This establishes the “if and only if” statement in the Proposition, as well as the
equality (4.2) in the differentiable case. For the equivalence between (4.2) and (4.3)
(when DF |p exists), let v = (v1, . . . , vn)t ∈ Rn. Then, by Corollary 3.5 (applied to the
component functions fi) and the definition of the maps ιi,

DF |p(v) =
m∑
i=1

ιi ◦Dfi|p(v)

=


∑n

j=1
∂f1
∂xj

(p) vj
...∑n

j=1
∂fm
∂xj

(p) vj


= JF (p)v.
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Since v was arbitrary, (4.2) and (4.3) are equivalent.

Remark 4.4 [Optional reading] An alternative derivation of (4.3) is the following.
With all notation as in Proposition 4.3, suppose F is differentiable at p. For 1 ≤ j ≤ n,
the directional derivative of F at p in direction ej is

(DpF )(ej) = lim
t→0

F (p+ tej)− F (p)

t

= lim
t→0

(
f1(p+ tej)− f1(p)

t
, . . . ,

fm(p+ tej)− fm(p)

t

)t
=

(
∂f1

∂xj
(p), · · · , ∂fm

∂xj
(p)

)t
=

m∑
i=1

∂fi
∂xj

(p) e′i.

Since DF |p is linear, for a general vector v =
∑n

j=1 vjej we therefore have

DF |p(v) =
n∑
i=1

vj DF |p(ej) =
n∑
j=1

vj(DpF )(ej)

=
n∑
j=1

vj

(
m∑
i=1

∂fi
∂xj

(p)e′i

)

=
m∑
i=1

(
n∑
j=1

∂fi
∂xj

(p)vj

)
e′i

=


∂f1
∂x1

(p) ∂f1
∂x2

(p) · · · ∂f1
∂xn

(p)
∂f2
∂x1

(p) ∂f2
∂x2

(p) · · · ∂f2
∂xn

(p)
...

...
. . .

...
∂fm
∂x1

(p) ∂fm
∂x2

(p) · · · ∂fm
∂xn

(p)




v1

v2
...
vn

 .

[End of optional reading.]N

With notation and hypotheses as in Theorem 2.1, let us now revisit the Chain Rule
for the special case V = Rn, W = Rm, and Z = Rk. From Proposition 4.3, for all
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w ∈ Rm and v ∈ Rn we have

Dg
∣∣
F (p)

(w) = Jg(F (p))︸ ︷︷ ︸
k×m

w︸︷︷︸
∈Rm

∈ Rk,

DF
∣∣
p
(v) = JF (p)︸ ︷︷ ︸

m×n

v︸︷︷︸
∈Rn

∈ Rm,

and D(g ◦ F )
∣∣
p
(v) = Jg◦F (p)︸ ︷︷ ︸

k×n

v︸︷︷︸
∈Rn

∈ Rk.

Thus Theorem 2.1 implies

Jg◦F (p)︸ ︷︷ ︸
k×n

v = D(g◦F )
∣∣
p
(v) = Dg

∣∣
F (p)

(
DF

∣∣
p
(v)
)

= Jg(F (p))︸ ︷︷ ︸
k×m

JF (p)︸ ︷︷ ︸
m×n

v︸︷︷︸
∈Rn

∈ Rk for all v ∈ Rn.

Therefore
Jg◦F (p) = Jg(F (p)) JF (p), (4.5)

i.e. “the Jacobian of a composition is the product of the Jacobians.” This is the second-
best statement of the Chain Rule.

Exercise 4.1 Check that equation (4.5) is exactly the chain rule you learned in Calculus
3, simply written in matrix notation. Check also that in the case n = m = 1, equation
(4.5) reduces to the Chain Rule you learned in Calculus 1 (see the paragraph before the
proof of Proposition 4.3).

Exercise 4.2 Let I ⊂ R, U ⊂ Rm be open, let q ∈ U , and suppose that F : U → Rk is
differentiable. Let v ∈ Rm, and suppose that γ : I → Rm is a differentiable function for
which γ(0) = q and γ′(0) := Jγ(0) = v. Show that

d

dt
F (γ(t))

∣∣
t=0

= JF (q)v = DF |q(v) = (DqF )(v),

and more generally that

d

dt
F (γ(t)) = JF (γ(t))γ′(t) = DF |γ(t)(γ

′(t)) = (Dγ(t)F )(γ′(t)).

5 Conditions for differentiability

If F is differentiable at p then, as we have seen,

1. The directional derivatives (DpF )(v) exist for all directions v.

2. For every v, the equality DF
∣∣
p
(v) = (DpF )(v) holds. Since DF

∣∣
p

is linear, the map

v 7→ (DpF )(v) must also be linear.
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Thus, these are necessary conditions for F to be differentiable at p. As the next two
examples show, these conditions are not sufficient. In these examples, for notational
simplicity we write elements of R2 as row vectors.

Example 5.1 Let f : R2 → R be the following function (any nonlinear function that is
homogeneous of degree 1 would do):

f(x, y) =

{
x3

x2+y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

Since f(tx, ty) = tf(x, y) we have(
D(0,0)f

)
((a, b)) = lim

t→0

f(t(a, b))− f((0, 0))

t
= f((a, b)) =

{
a3

a2+b2
if (a, b) 6= (0, 0)

0 if (a, b) = (0, 0).

Thus, for every (a, b), the directional derivative of f at (0, 0) in the direction (a, b) exists.
However, the map (a, b) →

(
D(0,0)f

)
((a, b)) is is not linear, so f is not differentiable at

(0, 0). N

The next example shows that even if (DpF )(v) exists for all v and the map v 7→
(DpF )(v) is linear, F need not be differentiable at p.

Example 5.2 Consider the function f : R2 → R given by

f(x, y) =

{
xy3

x2+y4
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0).

For this f we have both

f
∣∣
x-axis

≡ 0 and f
∣∣
y-axis

≡ 0,

so ∂f
∂x

(0, 0) = 0 = ∂f
∂y

(0, 0). Moreover, for any (a, b) 6= (0, 0),

f((0, 0) + t(a, b))− f(0, 0)

t
=
f(ta, tb)

t
=

1

t
· t4ab3

t2a2 + t4b4
=

tab3

a2 + t2b4
→ 0 as t→ 0.

Thus, all directional derivatives of f exist at (0, 0) and are zero (so, in particular, the map
v 7→ (D(0,0)f)(v) is linear). Therefore, if f were differentiable at (0, 0) the derivative of f at
(0, 0) would be the zero-map R2 → R. By the “Substitution Lemma for limits”, it would
then follow that if γ : R \ {0} → R2 \ {0} is any function for which limt→0 γ(t) = (0, 0)

(a curve approaching the origin as t → 0), we must have limt→0
f(γ(t))−f(0,0)
‖γ(t)‖ = 0. In

particular this would hold for γ(t) = (t2, t) = (x(t), y(t)) (approaching the origin along
the parabola x = y2). But for this curve γ, we have

lim
t→0

f(x(t), y(t))− f(0, 0)

‖(x(t), y(t))‖
= lim

t→0

t5/(2t4)√
t4 + t2

= lim
t→0

1

2
√

1 + t2
t

|t|
,

which does not exist. Hence f is not differentiable at (0, 0). N
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In view of the previous two examples, one may ask whether there are any simple
conditions on the directional derivatives of F that guarantee the existence of the derivative
of F at a given point? The answer is yes; one such result, stated only for the case
V = Rn,W = Rm, is Proposition 5.3 below. However, bear in mind that the result
gives just a sufficient conditions for differentiability at a point, not necessary condition.
Definition 1.1 cannot be simplified.

Proposition 5.3 Let U ⊂ Rn be open, F = (f1, . . . , fm)t : U → Rm a function, and
p ∈ U . Let {xi}ni=1 be the standard coordinates on Rn. If each of the partial derivatives
∂fi
∂xj

exists on some open neighborhood of p, and is continuous at p, then F is differentiable
at p.

Remark 5.4 The condition in Proposition 5.3 is the first condition (sufficient or neces-
sary) we’ve seen for “F is differentiability at p” that involves knowing differentiability of
something at points other than p. The fact that it involves any sort of differentiability
at points other than p should serve as a reminder that this condition is unlikely to be
necessary for differentiability at p. The function f : R→ R defined by

f(x) =

{
x2 sin(1/x), x 6= 0,
0, x = 0,

is an example of a function R → R that is differentiable everywhere, but for which the
condition in Proposition 5.3 is not met at x = 0. N

Proof of Proposition 5.3: In view of Proposition 4.3, it suffices to prove Proposition
5.3 for the case m = 1. Thus, let f : U → R be a function such that for 1 ≤ j ≤ n, each
of the partial derivatives ∂f

∂xj
exists on an open neighborhood of p, and is continuous at p.

Let {ej}nj=1 be the standard basis of Rn. Define a linear transformation T : Rn → R

by T (
∑n

j=1 vjej) =
∑n

j=1
∂f
∂xj

(p)vj. Taking the norm on V = Rn to be the `∞-norm ‖ ‖∞,

and the norm on W = R to be the standard norm on R, we will show that for all ε > 0
there exists δ > 0 such that for all v ∈ Rn with ‖v‖∞ < δ, (1.3) is satisfied, and therefore
that f is differentiable at p. (As noted in Remark 1.6, the choices of norms on V and W
do not affect whether f is differentiable at p, so we are free to choose any norms we find
convenient.)

Let ε > 0. For each j ∈ {1, . . . , n} let δj > 0 be such that such that for all q in the
`∞ open ball Bδj(p), we have | ∂f

∂xj
(q) − ∂f

∂xj
(p)| < ε. Let δ = 1

2
min{δ1, . . . , δn}, so that

B̄δ(p) ⊂ Bδj(p) for all j.
Let {xj}nj=1 be the standard coordinates on Rn, and let v ∈ Bδ(0Rn). For 1 ≤ j ≤ n

let pj = xj(p), vj = xj(v). (Thus v = (v1, . . . , vn)t and |vj| < δ, 1 ≤ j ≤ n.) For 0 ≤ k ≤ n

define q(k) = p +
∑k

j=1 vjej, the point whose first k coordinates are those of p + v and
whose last n− k coordinates are those of p. Then

f(p+ v)− f(p) = f(q(n))− f(q(0))

= [f(q(n))− f(q(n−1))] + [f(q(n−1))− f(q(n−2))] + · · ·+ [f(q(1))− f(q(0))].

(5.1)
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(Essentially, when read from the last bracketed expression to the first, equation (5.1) says:
“Walk from the ‘corner’ p of a ‘cube’ to the opposite ‘corner’ p+v by walking first along an
edge parallel to the 1st coordinate axis, then along an edge parallel to the 2nd coordinate
axis, etc.”) Let k ∈ {1, . . . , n}. Observe that q(k) = q(k−1) +vkek. For t ∈ [−δ, δ], the point
z(k)(t) := q(k−1) + tek lies in B̄δ(p) ⊂ Bδk(p), a set on which ∂f

∂xk
exists and is continuous.

But
d

dt
f(z(k)(t)) =

∂f

∂xk
(z(k)(t)),

so the function t 7→ f(z(k)(t)) is differentiable on an open interval that contains the closed
interval with endpoints 0 and vk. Hence we may apply the Mean Value Theorem and
select ck between 0 and vk such that

f(q(k))− f(q(k−1)) = f(z(k)(vk))− f(z(k)(0)) =
∂f

∂xk
(z(k)(ck))vk. (5.2)

Define q̃(k) = z(k)(ck). Note that q̃(k) lies in Bδ(p) ⊂ Bδk(p), so | ∂f
∂xj

(q̃(k))− ∂f
∂xj

(p)| < ε.

Plugging (5.2) into (5.1), and using the definition of T , we have

|f(p+ v)− f(v)− T (v)| =

∣∣∣∣∣
n∑
k=1

∂f

∂xk
(q̃(k)) vk −

n∑
j=1

∂f

∂xj
(p) vj

∣∣∣∣∣
=

∣∣∣∣∣
n∑
j=1

(
∂f

∂xj
(q̃(j))− ∂f

∂xj
(p)

)
vj

∣∣∣∣∣
≤

n∑
j=1

∣∣∣∣ ∂f∂xj (q̃(j))− ∂f

∂xj
(p)

∣∣∣∣ |vj|
≤

n∑
j=1

ε‖v‖∞

= nε‖v‖∞.

Thus for all v ∈ Rn with ‖v‖∞ < δ, we have |f(p + v) − f(v) − T (v)| ≤ nε‖v‖∞.
Since ε was arbitrary, it follows that f is differentiable at p (and that Df |p = T ).

The remainder of this section is optional reading.

Corollary 5.5 Let U ⊂ Rn be open, F : U → Rm a function, and p ∈ U . Suppose there
is an open neighborhood of U ′ of p such that for all v ∈ Rn, the directional derivative
(DqF )(v) exists for every q ∈ U ′, and the map q 7→ (DqF )(v) is continuous. Then F is
differentiable at p.

Exercise 5.1 (optional) (a) Prove Corollary 5.5.
(b) Strengthen Corollary 5.5 by showing that Rn,Rm can be replaced by arbitrary

finite-dimensional vector spaces. I.e., prove the following corollary:
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Corollary 5.6 Let V,W be finite-dimensional vector spaces, U ⊂ Rn open, F : U → Rm

a function, and p ∈ U . Suppose there is an open neighborhood of U ′ of p such that
for all v ∈ V , the directional derivative (DqF )(v) exists for every q ∈ U ′, and the map
q 7→ (DqF )(v) is continuous. Then F is differentiable at p.

Remark 5.7 Proposition 5.3 is stronger than Corollary 5.5; the Proposition shows that
we can deduce differentiability at p from knowing the continuity at p of just all the
first partials, of which there are only finitely many, whereas there are infinitely many
directional derivatives. However, when V and W are not explicitly Rn and Rm, there
are no “standard coordinates”, so the partials used in the Proposition do not make sense.
We can always introduce bases for V and W (equivalently, introduce isomorphisms V →
Rdim(V ),W → Rdim(W )). A basis of V determines coordinate-functions, while a basis of W
determines component-functions {fi} of the map F , so choices of bases allow us to define
partial derivatives of component-functions with respect to coordinates on V . However,
there are instances in which it is very easy to compute all directional derivatives, and
show that they are continuous; introducing a bases and computing partial derivatives of
component functions simply becomes extra work. In these instances, Corollary 5.6 can be
much more useful than Proposition 5.3. The exercise below illustrates one such instance.N

Exercise 5.2 Let V = W = Mn×n, the space of n × n matrices. Define F : V → V by
F (A) = A2 := AA. (For any square matrix A and positive integer k, we define Ak =
AA . . . A, the product of k copies of A.) (a) Compute (DAF )(B) for all A,B ∈ Mn×n.
(b) Show that for each B ∈ V , the map A 7→ (DAF )(B) is continuous. (Hence F is
differentiable.)

6 Continuous differentiability

Definition 6.1 If F : (U ⊂ V ) → W is differentiable we say F is continuously dif-
ferentiable (on U), or C1 (on U), if the induced map DF : U → Hom(V,W ) given by
p 7→ DF

∣∣
p

is continuous.

Exercise 6.1 For m,n ∈ N, let Mm×n denote the space of m × n matrices—“space”
rather than just “set” because there is a natural vector-space structure (we can add two
m×n matrices and get another, we can multiply any m×n matrix by a real number and
get another m × n matrix, the matrix of all 0’smseves as a zero-element, and all other
parts of the definition of “vector space” are satisfied). Recall (from MAS 4105) that the
map from Mm×n → Hom(Rn,Rm) defined by

A 7→ left-multiplication by A

= the linear map Rn → Rm given by v 7→ Av,

is an isomorphism; its inverse is the map

(Ã ∈ Hom(Rn,Rm)) 7→ (the matrix of Ã w.r.t. the standard bases of Rn,Rm).
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Let U be an open set in Rn, let Ã : U → Hom(Rn,Rm) be a function, and for each
p ∈ U let A(p) be the matrix of Ã(p) with respect to the standard bases. This defines a
map A : U → Mm×n. For 1 ≤ i ≤ m and 1 ≤ j ≤ m, let aij : U → R be the function
defined by

aij(p) = (ij)th entry of Aij(p).

Show that the following are equivalent:

(i) The map Ã : U → Hom(Rn,Rm) is continuous.

(ii) The map A : U →Mm×n is continuous.

(iii) All of the functions aij : U → R are continuous.

(Suggestion: Use the fact that {Eij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis of Mm×n, where “
Eij is the m× n matrix whose (i, j)th entry is 1 and all of whose other entries are 0.)

An immediate corollary of Proposition 5.3 and Exercise 6.1 is the following:

Corollary 6.2 Let U ⊂ Rn be open, let F = (f1, . . . , fm)t : U → Rm be a function, and
let {xi}ni=1 be the standard coordinates on Rn. Then F is continuously differentiable if
and only if each of the partial derivatives ∂fi

∂xj
exists throughout U and is continuous on U .

Proof: First assume that F is continuously differentiable. Then DF |p exists for every p ∈
U , and the map U → Hom(Rn,Rm) given by p 7→ DF |p is continuous. By Exercise 6.1,
this implies that each of the partial derivatives ∂fi

∂xj
exists throughout U and is continuous.

Conversely, assume that each of the partial derivatives ∂fi
∂xj

exists throughout U and is

continuous on U . By Proposition 5.3, F is differentiable at every point of U . By the Exer-
cise 6.1, the assumed continuity of the partials implies that the map U → Hom(Rn,Rm)
given by p 7→ DF |p is continuous. Hence f is continuously differentiable.

Remark 6.3 Because the conditions in Corollary 6.2 are necessary and sufficient for
continuous differentiability (not just-plain differentiability!) of F : (U ⊂ Rn)→ Rm, the
condition “if each of the partial derivatives ∂fi

∂xj
exists throughout U and is continuous

on U” is often taken as the definition of “F is continuously differentiable on U”, in
place of Definition 6.1. (Definition 6.1 is conceptually the best definition of “continuous
differentiability”, but not the easiest definition to apply in practice.) Note, however, that
as stated, this alternate definition applies only for functions from (an open subset of) Rn

to Rm. For more general finite-dimensional vector spaces V and W , we must introduce
bases, and the associated coordinate functions, in order to make a similar definition. It is
not hard to show that, in this more general situation, the continuous-partial-derivatives
condition is independent of the choice of bases. N
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