
MAA 4212, Spring 2021—Assignment 1’s non-book problems

B1. Let (X, d) be a metric space.
(a) Prove the “iterated triangle inequality”: for all n ≥ 1 and all x, z, and y1, y2, . . . , yn ∈

X, we have

d(x, z) ≤ d(x, y1) + d(y1, y2) + · · ·+ d(yn−1, yn) + d(yn, z).

(b) Prove that for all x, y, z ∈ X, we have

|d(x, y)− d(x, z)| ≤ d(y, z).

B2. Let X be any nonempty set and let ~y := (yn)∞n=1 be a sequence in X. Recall that we
say that ~y is eventually constant if there exists p ∈ X and N ∈ N such that for all n ≥ N ,
we have yn = p.

Note: Part (a), a reworded version of Tao exercise 1.1.13, is a special case of part
(b), and is not needed in order to do part (b). If you are able to do (b) without (a) first,
you don’t need to do (a) separately.

(a) Show that ~y converges in (X, ddisc) if and only if ~y is eventually constant. Also
show that in the convergent case, the limit is the eventual value of the sequence (the “p”
above).

(b) Same as part (a), but with ddisc replaced by an arbitrary discrete metric (as
defined in class).

B3. Let V be a vector space with more than one element, and let d be a metric on V such
that d is a bounded function. (The metric ddisc is one such example.) Show that there is
no norm ‖ ‖ on V such that d = d‖ ‖.

B4. Let X be a set, and let d1, d2 be metrics on X. Recall that (in this course) we say
that d1 is equivalent to d2, and write “d1 ∼ d2”, if there exist c1, c2 > 0 such that for all
x, y ∈ X, we have

d2(x, y) ≤ c1d1(x, y) and d1(x, y) ≤ c2d2(x, y). (1)

(a) Show that the following are equivalent:

(i) d1 ∼ d2.

(ii) There exist c1, c2 ∈ R such that for all x, y ∈ X, inequalities (1) hold.
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(iii) There exist c3 ∈ R and c4 > 0 such that for all x, y ∈ X, we have
c4d1(x, y) ≤ d2(x, y) ≤ c3d1(x, y).

(iv) There exists C > 0 such that for all x, y ∈ X, we have
1
C
d1(x, y) ≤ d2(x, y) ≤ Cd1(x, y).

(b) Show that the relation “∼” above is an equivalence relation on the set of all
metrics on X.

(As a consequence of part (b), since the relation is symmetric, if d1 ∼ d2 we may
sensibly say “d1 and d2 are equivalent.”)

B5. Let n ≥ 1. Show that the `1, `∞, and `2 norms on Rn are equivalent, and hence that
their associated metrics are equivalent. (This is an amalgamation of Tao exercises 1.1.8
and 1.1.10.)

B6. Let d1, d2 be equivalent metrics on a set X. For i ∈ {1, 2}, let us say that sequence
in X is di-convergent if the sequence converges in the metric space (X, di).

Let (xn)∞n=1 be a sequence in X.

(a) Let p ∈ X. Prove that xn −→
d1

p if and only if xn −→
d2

p.

(b) Deduce from part (a) that a sequence in X is d1-convergent if and only if it is
d2-convergent.

Note: The terminology “d1-convergent”, “d2-convergent” is not standard. However, if you use

this terminology (when given two metrics on the same set) outside this class, any mathematician

will assume you are using it with the meaning above.

B7. Let R∞ denote the space of real-valued sequences (indexed by N = {1, 2, 3, . . . }).
Notation for this problem: a sequence (xn)∞n=1, is also denoted ~x, and conversely, if the
notation ~x is used for a sequence, then the nth term of the sequence is named xn. (All of
this applies with x replaced by other letters as well.)

Just as last semester (modulo notation), for ~x, ~y ∈ R∞ and c ∈ R, we define
~x + ~y = (xn + yn)∞n=1 and c~x = (cxn)∞n=1, and define ~0 ∈ R∞ to be the constant se-
quence all of whose terms are 0. In homework last semester (in my section), you saw that
with these operations and zero-element, R∞ is a vector space.

Define `∞(R) ⊆ R∞ to be the set of all bounded real-valued sequences, and define
`1(R) ⊆ R∞ by

`1(R) := {~x ∈ R∞ :
∞∑
n=1

|xn| converges}.

(a) Show that `1(R) ( `∞(R).
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(b) Show that `1(R) and `∞(R) are vector subspaces of R∞. (It then follows automat-
ically from (a) that `1(R) is a vector subspace of `∞(R).)

(Recall from class: The term “vector subspace” means exactly what you simply called

“subspace” in MAS 4105. In this class, we need to be careful not to use the word subspace

ambiguously, since we have also defined “(metric) subspace” of a metric space (X, d),

meaning the metric space (Y, d|Y×Y ), where Y is any subset of X.)

(c) Define functions ‖ ‖∞ : `∞(R)→ R and ‖ ‖1 : `1(R)→ R as follows:

‖~x‖∞ = sup{|xn| : n ∈ N} for all ~x ∈ `∞(R),

‖~x‖1 =
∞∑
n=1

|xn| for all ~x ∈ `1(R).

Show that ‖ ‖∞ and ‖ ‖1 are norms on the vector spaces `∞(R) and `1(R), respec-
tively.

Notation convention. The norms defined above are called the `∞ and `1 norms
on `∞(R) and `1(R), respectively; their associated metrics d`∞ and d`1 are called the
`∞ and `1 metrics on these vector spaces. These norms and metrics are regarded
as the “standard” norms and metrics on these vector spaces. When `∞(R) or
`1(R) is referred to as a metric space, or treated implicitly as one, and no norm
or metric is stated explicitly, the corresponding “standard” norm and metric are
being assumed implicitly. Thus, the notations `∞(R) or `1(R) are sometimes used
just for the underlying sets defined earlier in this problem, and sometimes used for
particular metric spaces in which these are the underlying sets. Context tells you
which meaning is intended (if the writer has done his or her job). For example, in
the statement “`1(R) ( `∞(R)”, the symbol “(” makes clear that we are regarding
`∞(R) and `1(R) simply as sets in this statement.

(d) Since `1(R) ⊆ `∞(R), we can consider the metric subspace (`1(R), d`∞). (To avoid
losing readers in a notational forest, I’ve just written “d`∞” here, rather than the
more precise “d`∞|`1(R)×`1(R)”).

(i) Show that for all ~x ∈ `1(R) we have ‖~x‖`∞ ≤ ‖~x‖1, and hence that any sequence
in `1(R) that is d`1-convergent is also d`∞-convergent. (Note: “sequence in
`1(R)” does not mean “element of `1(R).” A sequence in `1(R), or more
generally in R∞, is a sequence of sequences.)

(ii) Show that there exists no c ∈ R such that for all ~x ∈ `1(R), we have
‖~x‖`1 ≤ c‖~x‖∞.

What (i) and (ii) show, together, is that only one of the two inqualities in the
definition of “equivalent norms” holds for the above norms on `1(R) (in contrast to
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what problem B5 shows for the norms on Rn carrying the same names). The `∞

and `1 norms on `1(R) are not equivalent, and therefore neither are their associated
metrics.

(e) Find (with proof) a sequence ~x in `1(R) ⊆ `∞(R) that is d`∞-convergent but not
d`1-convergent. (Original problem had a typo, “sequence ~x ∈ `1(R)” instead of
“sequence in `1(R)”. This made the problem-statement make no sense, since an
element of a metric space (X, d) isn’t something to which the term “d-convergent”
can apply. Because of that, I treated this problem-part as extra credit.)

Hint. In B5, for each n ∈ N you (should have) found a constant c(n) such that
for all v ∈ Rn, we have ‖v‖`1 ≤ c(n)‖v‖`∞ , where the indicated norms are the
`1 and `∞-norms on Rn. If the constants c(n) you found are valid, the sequence
(c(n))∞n=1 grows without bound. In finding c(n), you probably found “worst case”
vectors v ∈ Rn for which no constant smaller than your c(n) would have worked.
These “worst case” vectors should give you an idea how to construct a sequence
(~y(m))∞m=1 in `1(R) that converges in `∞(R), but for which the real-valued sequence
(‖~y(m)‖)∞m=1 is unbounded. You should be able to use this unboundedness to show
that (~y(m))∞m=1 cannot converge in `1(R).

B8. Considering Q (the set of rational numbers) as a subset of the metric space R,
find the boundary ∂Q and closure Q.
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