
MAA 4212, Spring 2021—Assignment 3’s non-book problems

I originally wrote problems B1 and B2 before looking at Tao’s exercises for Section
2.1. Problem B1 is essentially the same as Tao’s exercise 2.1.5; problem B2(c) is essen-
tially the same as Tao’s exercises 2.1.6–2.1.7.

B1. (“Inclusion maps are continuous.”) Let (X, d) be a metric space and let S ⊆ X.
Define ιS : S → X by: ιS(x) = X for all x ∈ S. Prove that ιS is continuous as a map
from (S, d|S×S) to (X, d).

Note: Unless S = X, we do not call ιS an identity map, since the domain and
codomain are not the same set. However, if S = X, then the inclusion map ιS is the
identity map of (X, dX). So a corollary of what you are proving for inclusion maps is that
the identity map on a metric space is continuous.

FYI: “ι” is the lower-case Greek letter iota. The LaTeX command for it is \iota.

Additional note In Tao’s notation in exercise 2.1.5, my “ιS” would be “ιS→X”. Com-
pared to “ιS”, the notation “ιS→X” has both an advantage and a disadvantage: the latter
notation carries more information, but the extra clutter can be distracting. In situations
where I think the more-information advantage outweighs the clutter disadvantage, there
is a third notation that has an even greater advantage, and that I may sometimes use:
“ιS↪→X”. (Notation of the form “f : A ↪→ B” is often used when a map f : A→ B is injec-
tive, which inclusion maps always are. The LaTeX command for “↪→” is \hookrightarrow.)

B2. Let (X, dX), (Y, dY ) be metric spaces, and let f : X → Y be a function.

(a) (“Restrictions of continuous functions are continuous.”) Let S ⊆ X. Give two
proofs that if f is continuous, then f |S is continuous (as a map from (S, dX |S×S) to
(Y, dY )). For one of these proofs, argue straight from the definition of continuity. For
the other proof, start by comparing the map f |S to the composition f ◦ ιS, where the
inclusion map ιS is as in problem B1. For the other proof, don’t directly use anything
about composition.

(b) Let T ⊆ Y be a subset that contains the range of f . Define f̂ : X → T by:
f̂(x) = f(x) for all x ∈ S. Prove that f is continuous (as a map from (X, dX) to (Y, dY ))
iff f̂ is continuous as a map from (X, dX) to (T, dY |T×T )).

(c) Let x0 ∈ X. Prove that the conclusions of (a) and (b) hold also if “continuous”
is replaced by “continuous at x0.” (You may have already done this, depending on your
method of proof for (a) and (b).)

B3. Let X and Y be sets. Let dX and d′X be equivalent metrics on X, and let dY and d′Y
be equivalent metrics on Y . Let f : X → Y be a function. Show that f is continuous as
a map from (X, dX) to (Y, dY ) iff f is continuous as a map from (X, d′X) to (Y, d′Y ).
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B4. Let (X, d) be a metric space, and let (Eα)α∈A be an indexed collection of connected
subsets of X (i.e. Eα is connected for each α ∈ A). Suppose there exists α0 ∈ A such that
for each α ∈ A, the intersection Eα∩Eα0 is non-empty. Show that

⋃
α∈AEα is connected.

(This is stronger than Tao Exercise 2.4.6, since above we assume only that one of the

sets in the collection (Eα)α∈A intersects all the others; we do not assume that there is point

common to all the sets in tthe collection. If the index-set A contains at least three elements, say

α1, α2, α3, it’s easy to construct examples in which the each intersection Eαi ∩Eαj is non-empty

(i, j,∈ {1, 2, 3}), but Eα1 ∩ Eα2 ∩ Eα3 = ∅.)

B5. Let (X, d) be a metric space and let x0 ∈ X. Show that x0 is an isolated point of X
if and only if there exists r > 0 such that B(x0, r) = {x0}.

B6. Let (X, d) be a metric space and let E ⊆ X.
(a) Let x0 ∈ E. Show that x0 is a cluster point of E if and only if x0 is a non-isolated

point of E.

(b) One direction of the “iff” in part (a) shows is that every cluster point of E is an
adherent point of E. Use the other direction to show that an adherent point x0 of E is a
cluster point of E if and only if either (i) x0 /∈ E or (ii) x0 is a non-isolated point of E.

(c) Show that E = E ∪ {all cluster points of E}.

B7. Let (X, dX), (Y dY ) be metric spaces, x0 ∈ X a cluster point of X, and f : X\{x0} →
Y a function.

(a) Show that f has at most one limit at x0. (Hence the notations limx→x0 f(x) and
limx f are well-defined when a limit exists, and we can phrase non-existence of a limit by
saying “limx→x0 f(x) does not exist” or “limx0 f does not exist.”)

(b) Let L ∈ Y . Let f̃ : X → Y be the extension of f defined by

f̃(x) =

{
f(x) if x 6= x0,
L if x = x0.

Show that limx→x0 f(x) if and only if f̃ is continuous at x0.

(c) Show that if g : X → Y is a function, then g is continuous at x0 if and only if
limx→x0 g(x) = g(x0).

B8. Let f : (X, dX)→ (Y, dY ) be a map between metric spaces. We say that f is Lipschitz
if there exists K > 0 such that

dY (f(x1), f(x2)) ≤ KdX(x1, x2) for all x1, x2 ∈ X. (1)

Show that if f is Lipschitz, then f is uniformly continuous.
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(The converse is false. As students from my fall section should recall: we made
the same definitiion of “Lipschitz” last semester just for the case (Y, dY ) = R and X =
interval ⊆ R. In that context, you showed that “Lipschitz implies uniformly continuous,”
but we saw that the square-root map from [0,∞) to R is uniformly continuous but not
Lipschitz.) Note: a constant K for which (1) holds is called a Lipschitz constant for the
map f . Lipschitz constants are never unique; if K is a Lipschitz constant for f , then so
is any K ′ > K.

B9. Let (X, d) be a metric space, S ⊆ X a nonempty subset. For y ∈ X the distance
from y to S, which we will write as dist(y, S), is defined to be inf{d(y, x) : x ∈ S}.

(a) Let y ∈ X. Prove that dist(y, S) = 0 if and only if y ∈ S.

(b) Assume S is compact and let y0 ∈ X. Prove that there exists x0 ∈ S such that
d(y0, x0) = dist(y0, S).

(In other words, you are proving that there exists a point of S that, among all points of S,

is closest to y0. Note that we do not call y0 the closest point in S to y0 without unless we know

that there is a unique such point.)

(c) Assume only that S is closed (but still nonempty) but that (X, d) = En = (Rn, dEuc)
(where n ∈ N is arbitrary). Again let y0 ∈ X. Prove the same result as in (b): there
exists x0 ∈ S such that d(y0, x0) = dist(y0, S).

B10. Recall that for any function f : A→ B, the graph of f is the subset of A×B defined
by

graph(f) := {(x, f(x)) : x ∈ A}
= {(x, y) ∈ A×B : y = f(x)}.

(a) Let (X, dX) and (Y, dY ) be metric spaces, and let f : X → Y be a continuous
function. Let dmax be the metric on X × Y constructed from dX and dY as in class (p.
12.6 of the lecture notes). Show that graph(f) is a closed subset of (X × Y, dmax).

(b) As a corollary of part (a), show that if f : R→ R is continuous, the graph of f
is a closed subset of E2 := (R2, dEuc).

(c) More generally, show that if X ⊆ R and f : X → R is continuous, then the graph
of f is relatively closed with respect to X ×R ⊆ E2.

(d) Define f : R → R by f(x) =

{
1/x if x 6= 0,
0 if x = 0.

Obviously f is not continuous.

Show that, nonetheless, its graph is a closed subset of E2. This shows that the converse
of “If f : X → Y is continuous, its graph is closed” is false.

Hint: consider the function g : R2 → R defined by g(x, y) = xy, and look back at
problem 4a on the first midterm. If, instead, you try to show that the complement of the

3



graph(f) is open by using an idea like “the distance from a point in the complement to a
closest point in the graph,”, you’ll be engaging in circular reasoning; see problem B9(c).

B11. Let (X, d) be a metric space. For any A ⊆ X, let χ
A

: X → R be the characteristic

function of A (as a subset of X); recall that this means χ
A

(x) =

{
1 if x ∈ A,
0 if x ∈ X\A.

(FYI: “χ” is the lower-case Greek letter χ.) Prove that the set of points at which χ
A

is not
continuous is precisely ∂A.

B12. Let (X, dX) and (Y, dY ) be metric spaces, and suppose that A and B are closed
subsets of X for which X = A ∪ B. Let f : X → Y be a function for which the
restrictions f |A : A→ Y and f |B : B → Y are continuous. Prove that f is continuous.

(An instance of this you’ve seen before, but that can be proven more easily than
the general case above: Suppose X = Y = R, suppose c ∈ R, let A = (−∞, c]
and B = [c,∞), and let f : R → R be a function for which f |A and f |B are
continuous. Then A and B are closed and A ∪ B = R, so proble Note that, as
in the given problem, A and B are closed and A ∪ B = R. In this “toy” problem
with X = R and A = (−∞, c] and B = [c,∞), all the work goes into showing that
f is continuous at c. For this, we use the continuity of f |A and f |B to show that
limx→c− f(x) = limx→c+ f(x) = f(c). By homework problem from last semester,
this implies that limx→c f(x) exists and equals f(c)., i.e. that f is continuous at c.

Note that had we taken A = (−∞, c) instead of A = (−∞, c], and had still taken

B = [c,∞), we would still have had R = A ∪B, but the continuity of f |A and f |B
would not have implied that f is continuous at c. For example, the characteristic

function of the interval [c,∞) restricts to the constant function 0fcn on (−∞, c) [our

new A] and to the constant function 1fcn on [c,∞) [our new and old B]. Thus f |A
and f |B are continuous, but f is not continuous at c. This example shows that,

in problem B12, the requirement that both A and B be closed is essential; any

proof-attempt that doesn’t use the closedness of both sets cannot be correct.)

B13. In this problem you will prove an important, fundamental result:

Theorem A3.1: For any n ≥ 1, all norms on Rn are equivalent. (Thus,
their associated metrics are also equivalent.)

The proof is a beautiful application of the Heine-Borel Theorem and the Extreme
Value Theorem. Below is a sketch of the argument. Use this sketch to write out a
complete proof. (Your proof should not explicitly refer to anything like “Step m given in
the sketch;” the sketch is just a long hint to help you write a stand-alone proof from start
to finish.)
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Sketch of proof. For the remainder of the problem, fix n ∈ N.

Step 1. Show that to prove that all norms on Rn are equivalent, it suffices
to show that an arbitrary norm ‖ ‖ on Rn is equivalent to the `1-norm
‖ ‖1 := ‖ ‖`1 on Rn. (Any fixed norm, not just the `1 norm, would serve this

purpose; we simply choose a fixed norm that’s easy to work with.) Then, for
the remainder of the problem, fix an arbitrary norm ‖ ‖ on Rn.

Step 2. Let S = {y ∈ Rn : ‖y‖1 = 1}. Show that S is closed and bounded in
(Rn, ‖ ‖1). (Throughout, we use the usual convention for treating normed

vector spaces as metric spaces: the implied metric is the one associated with

the norm.)

Step 3. Let {ei}ni=1 be the standard basis of Rn (the basis for which the ith

coordinate of ei is 1 and all other coordinates are 0). Let C = max{‖ei‖ :
1 ≤ i ≤ n}. Show that for all x ∈ Rn, we have ‖x‖ ≤ C‖x‖1.

Step 4. Using the result of Step 3, show that g := ‖ ‖ : (Rn, ‖ ‖1) → R defined
by g(x) = ‖ ‖ is continuous. (In other words, the norm-function ‖ ‖ is

continuous with respect to the metric defined by the other norm, ‖ ‖1.)

Step 5. Let h = g|S : S → R. Applying earlier parts of this problem, show that h
is a continuous function from a compact metric space to R, and therefore
(why?) achieves a minimum value m. Show also that m > 0.

Thus for all y ∈ Rn with ‖y‖1 = 1, we have ‖y‖ ≥ m > 0.

Step 6. Use the result of Step 5 to show that for all x ∈ Rn, we have ‖x‖ ≥
m‖x‖1.

Step 7. Combine the results of steps 6 and 3 to show that ‖ ‖ is equivalent to
‖ ‖1.

Remark. As mentioned but not proven in class, for all p ∈ [1,∞) the

function ‖ ‖`p : Rn → R defined by ‖(x1, . . . , xn)‖`p = (
∑n

i=1 |xi|p)
1/p

is a
norm on Rn. Modulo showing that each of these `p norms is, in fact, a norm,
it is easy to show by explicit calculation that all these norms are equivalent;
we do not need Theorem A3.1 for that. But there are many norms on Rn that
are not `p norms for any p ∈ [1,∞].

B14. Prove the following corollary of Theorem A3.1.

Corollary A3.2: Let V be a finite-dimensional vector space. Prove that all
norms on V are equivalent (i.e. any two norms on V are equivalent to each
other.)
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Hint: Use the fact that if n = dim(V ) ∈ N then V is isomorphic to Rn.
Choose an isomorphism L : Rn → V , and for every norm ‖ ‖ on V , show that
the function ‖ ‖L : Rn → R defined by ‖x‖L = ‖L(x)‖ is a norm on Rn. Then
make appropriate use of Theorem A3.1.

Remark: In view of Corollary A3.2, all norms on a finite-dimensional vector
space V determine the same open sets. This collection of open sets is called
the norm topology on V .

B15. Prove another important, fundamental result:

Proposition A3.3: Let (V, ‖ ‖V ), (W, ‖ ‖W ) be normed vector spaces, and
assume that V is finite-dimensional. Prove that every linear transformation
V → W is continuous with respect to the given norms.

Hint: Let n = dim(V ). First deal with the case n = 0. Then assume
n ∈ N, choose a basis e := {e1, . . . , en} of V and let {xi : V → R}ni=1

be the associated coordinate functions. (Recall that these are defined by
xi(
∑

j ajej) = ai; thus v =
∑

j xj(v)ej for all v ∈ V .) Show that the map
‖ ‖1,e : V → R defined by ‖v‖1,e =

∑n
i=1 |xi(v)| is a norm on V . Then find

C ≥ 0 such that ‖T (v)‖W ≤ C‖v‖1,e. Use this, plus linearity, to show that
T : (V, ‖ ‖1,e → (W, ‖ ‖W ) is Lipschitz, and therefore continuous. Then show
that this implies that T : (V, ‖ ‖V )→ (W, ‖ ‖W ) is continuous.

Remark. An important corollary of Proposition A3.3 is the following:

Corollary A3.4: Let n ∈ N and let (V, ‖ ‖) be an n-dimensional vector
space. Let {ei}ni=1 be a basis of V , and let {xi}ni=1 be the corresponding coor-
dinate functions. Then for each i ∈ {1, 2, . . . , n}, the function xi : V → R is
continuous.

This follows from Proposition A3.3 and the fact that coordinate functions are
linear transformations V from V to R, hence are continuous.

Remark. If V = Rn and ‖ ‖ is the `1, `2, or `∞ norm, then for 1 ≤ i ≤ n we
have

‖aiei‖ = |ai| ≤ ‖(a1, . . . , an)‖. (2)

This makes it easy to prove directly (without results from this assignment)
that the usual coordinate functions {xi} on Rn (the coordinate functions de-
termined by the standard basis) are continuous with respect to these three
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norms. But there are norms on Rn for the inequality (2) is not true. Hence,
without Theorem A3.1, it is not obvious that these coordinate functions are
continuous with respect to every norm on Rn. For the same reason, it is not
trivial that the coordinate functions determined by an arbitrary basis of an
arbitrary n-dimensional normed vector space are continuous.

B16. Let (Y, dY ) be a metric space.

(a) Let X be a nonempty set. Prove that if (Y, dY ) is complete, then so is
(B(X, Y ), d∞), the space of bounded functions from X to Y .

(b) Let (X, dX) be a metric space. Prove that if (Y, dY ) is complete, then so is
(BC(X, Y ), d∞), the space of bounded continuous functions from X to Y. (This completes

the proof of Proposition 21.3 in the lecture notes.)

B17. (a) Show that the normed vector space (B(N,R), ‖ ‖∞) is precisely the space
(`∞(R), ‖ ‖∞) defined in Homework Assignment 1. (In this problem-part, “show” essentially

means “check” or “observe”. Part of what you’re checking is that when our newer, more general

definition of ‖ ‖∞ on the space B(X,R) for an arbitrary nonempty set X reduces to Assignment

1’s definition of ‖ ‖∞ on `∞(R) if X = N.) Thus, by problem B16(a), `∞(R) is complete.

As noted in Assignment 1, the space (`∞(R), ‖ ‖∞) is usually denoted just `∞(R).
We will do this below.

It is often useful to picture a sequence (~a(m))∞m=1 in `∞(R) (or more generally in
R∞)—a sequence of sequences—as an array with infinitely many rows and columns, in
which the first row is the sequence ~a(1), the second row is the sequence ~a(2), etc.:

a
(1)
1 a

(1)
2 a

(1)
3 a

(1)
4 . . .

a
(2)
1 a

(2)
2 a

(2)
3 a

(2)
4 . . .

a
(3)
1 a

(3)
2 a

(3)
3 a

(3)
4 . . .

...
...

...
...

...

(b) Let ~0 denote the zero element of `∞(R), the sequence each of whose terms is
0 ∈ R. For m ∈ N, let ~e(m) ∈ `∞(R) be the sequence whose mth term is 1 and all of
whose other terms are zero (e.g. ~e(3) = (0, 0, 1, 0, 0, 0, 0, . . . )). Show that the sequence
E := (~e(m))∞m=1 converges pointwise to ~0.

Here, for the meaning of “pointwise”, we are viewing `∞(R) as B(N,R). Since
the notation “(xi)

∞
i=1” for a real-valued sequence is simply convenient notation for the

function (i ∈ N) 7→ xi ∈ R, saying that the sequence E converges pointwise to ~0 is

the same as saying that for each i ∈ N, the real-valued sequence (e
(m)
i )∞m=1 converges to

0 ∈ R. In terms of the diagram above, this sequence is represented by the ith column of
the corresponding array.
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(c) Use part (b) and results from class to prove that if the sequence E converges
uniformly, then it must converge uniformly to ~0.

(d) Compute d∞(~e(m),~0) for all n, and use your answer to show that E does not
converge in `∞(R) to ~0. Hence, by part (c), E does not converge in `∞(R), period.

(e) Compute d(~e(n), ~e(m)) for all m,n ∈ N with m 6= n. Use your answer to show
that no subsequence of E can be Cauchy. Use this to deduce that no subsequence of E
can converge.

(f) Use part (e) to deduce that the closed unit ball B̄1(~0) ⊆ `∞(R) is not sequentially
compact, hence is not compact.

Thus B̄1(~0) is a closed, bounded subset of a complete normed vector space, but is not

compact. The Heine-Borel Theorem is false in infinite dimensions. More precisely, in the

statement of the Heine-Borel Theorem, if we replace (Rn, ‖ ‖) by an infinite-dimensional normed

vector space, the statement we obtain is false.

B18. For any set X, let X∞ denote the set of sequences in X. (Thus an element

~x ∈ X∞ is a sequence (xn)∞n=1, where xn ∈ X for all n ∈ N.) For a metric space (X, d),
define a relation ∼ on X∞ by

~x ∼ ~w if and only if lim
n→∞

d(xn, wn) = 0,

where ~x = (xn)∞n=1 and ~w = (wn)∞n=1. The same notation will be used below.

(a) Let (X, d) be a metrc space.

(i) Prove that ∼ is an equivalence relation on X∞.

(ii) Let ~x, ~w ∈ X∞ and assume ~x ∼ ~w. Prove that if ~x is Cauchy, then so is ~w.

(iii) Let ~x, ~w ∈ X∞ and assume that (xn)∞n=1 converges to p ∈ X. Prove that (wn)∞n=1

converges to p if and only if ~x ∼ ~w.

(b) Let (X, dX) and (Y, dY ) be metrc spaces, and let f : X → Y be a uniformly
continuous function. Define f∞ : X∞ → Y ∞ by f∞

(
(xn)∞n=1

)
=
(
f(xn)

)∞
n=1

.

(i) Show that if ~x and ~w are sequences in X, and ~x ∼X ~w, then f∞(~x) ∼Y f∞(~w). (Since

we have two different metric spaces X and Y , we’ve added subscripts to distinguish the

two relevant equivalence relations.)

(ii) Show that if ~x ∈ X∞ is Cauchy, then so is f∞(~x).

Assignment continues on next page.
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B19. Extensions of continuous functions with dense domains. Recall that a subset
S of a metric space X is called dense if the closure of S is the entire space X (e.g. Q is
dense in R); equivalently, if every point in X\S is a cluster point of S.

Let (X, dX), (Y, dY ) be metric spaces, let S be a dense subset of X, and let f : S → Y
be a function. Below we will assume that f is continuous (“just plain” or uniformly). In
this problem we are interested in extensions of f to X—i.e. maps f̃ : X → Y such that
f̃S = f—that have the same continuity property that f has. (This generalizes a problem

considered last semester: if f : (a, b)→ R is a continuous function, does f extend continuously

to [a, b]? We saw that in this setting, if f is uniformly continuous then the answer is yes.)

(a) Let f : S → Y be a continuous function, and suppose that f̃1, f̃2 are continuous
extensions of f to X. Show that f̃1 = f̃2. (Thus a continuous extension of f to X, if any
exists, is unique.)

(b) Assume that (Y, dY ) is complete and that f : S → Y is uniformly continuous.
Prove that f has a unique continuous extension to X, and that the extended function f̃
is uniformly continuous.

Hint: In view of part (a), if we can establish existence of even a “just plain”
continuous extension f̃ , then f̃ will automatically be the unique such exten-
sion. Thus, the work will go into showing existence of a uniformly continuous
extension f̃ . To define an extension f̃ , it suffices to define f̃(x) for x ∈ X\S.
Since S is dense, for any such x there exists a sequence ~x := (xn)∞n=1 con-
verging to x. Using problem B18 and the completeness of (Y, dY ), show that
limn→∞ f(xn) exists and is independent of the choice of sequence ~x (i.e. if both
~x and ~w converge to x, then limn→∞ f(xn) = limn→∞ f(wn) ). Use this fact to
unambiguously define an appropriate element f̃(x) ∈ Y , and thereby to obtain
an extension f̃ : X → Y . Finally, to conclude that f̃ is uniformly continuous,
show that given any x,w ∈ X and any sequences ~x, ~w ∈ X∞ converging to
x,w respectively, dY (f̃(x), f̃(w)) = limn→∞ dY (f(xn), f(wn)), and then apply
a fact you established during your proof of B18(b)(i).

Assignment continues on next page.
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B20. Length of a curve in a metric space. A curve in a metric space (X, d) is a
continuous function f : [a, b] → R (where [a, b] can be any closed, bounded, positive-
length interval in R). The length of a curve f : [a, b]→ X is defined to be

`(f) := sup

{
N∑
i=1

d(f(xi−1, f(xi)) : {x0, x1, . . . , xN} is a partition of [a, b]

}
(3)

provided that the supremum exists, i.e. that the set of sums in (3) is bounded. (When
this supremum exists, we say that the length of the curve exists, or is finite, or that the
curve has length; otherwise we say that the length of the curve does not exist, or is infinite,
or that the curve does not have length.) “Partition of [a, b]” in (3) has the same meaning
as in Riemann integration, but the sums in (3) are, in general, not Riemann sums of any
function g : [a, b]→ R.

When X = Rn, a curve f can be written in the form (f1, f2, . . . , fn), where fi s a
real-valued function on [a, b], 1 ≤ i ≤ n. (Alternatively, f = f1 ⊕ f2 ⊕ . . . ⊕ fn), where we

generalize our definiton of the direct sum of two functions from [a, b]→ R to the direct sum of

n such functions.) We say that f is continuously differentiable if each of the component
functions fi is continuously differentiable.

Prove that if (X, d) is Euclidean space En := (Rn, dEuc) = (Rn, d`2), and
f : [a, b] → R is a continuously differentiable curve, then the length of the curve f
exists and is equal to ∫ b

a

√
f ′1(t)

2 + f ′2(t)
2 + · · ·+ f ′n(t)2 dt.

(You will probably find this the most difficult problem I have assigned. Here are some hints
to reduce the difficulty: (1) the Mean Value Theorem is relevant, but does not generalize
to vector-valued functions. (2) Something that the MVT, if correctly used, will lead you
to write down, is not a Riemann sum, but can be related to a Riemann sum by applying “a
continuous real-valued function on a compact set is uniformly continuous” to the right function
and compact set.

If you have what you think is a quick proof that doesn’t involve the MVT and uniform

continuity, you are probably overlooking something, making an implicit assumption, etc.) mm-
mmmm
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