
MAA 4212, Spring 2021—Assignment 4’s non-book problems

Problems B1–B5 are the same as Assignment 3’s problems B16–B20, except that
the (current) B5(d) has reworded to give you two ways of reaching that problem-part’s
conclusion.

B1. Let (Y, dY ) be a metric space.

(a) Let X be a nonempty set. Prove that if (Y, dY ) is complete, then so is
(B(X, Y ), d∞), the space of bounded functions from X to Y .

(b) Let (X, dX) be a metric space. Prove that if (Y, dY ) is complete, then so is
(BC(X, Y ), d∞), the space of bounded continuous functions from X to Y. (This completes

the proof of Proposition 21.3 in the lecture notes.)

B2. (a) Show that the normed vector space (B(N,R), ‖ ‖∞) is precisely the space
(`∞(R), ‖ ‖∞) defined in Homework Assignment 1. (In this problem-part, “show” essen-

tially means “check” or “observe”. Part of what you’re checking is that when our newer, more

general definition of ‖ ‖∞ on the space B(X,R) for an arbitrary nonempty set X reduces to

Assignment 1’s definition of ‖ ‖∞ on `∞(R) if X = N.) Thus, by problem B16(a), `∞(R) is
complete.

As noted in Assignment 1, the space (`∞(R), ‖ ‖∞) is usually denoted just `∞(R).
We will do this below.

It is often useful to picture a sequence (~a(m))∞m=1 in `∞(R) (or more generally in
R∞)—a sequence of sequences—as an array with infinitely many rows and columns, in
which the first row is the sequence ~a(1), the second row is the sequence ~a(2), etc.:
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a
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4 . . .
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...

(b) Let ~0 denote the zero element of `∞(R), the sequence each of whose terms is
0 ∈ R. For m ∈ N, let ~e(m) ∈ `∞(R) be the sequence whose mth term is 1 and all of
whose other terms are zero (e.g. ~e(3) = (0, 0, 1, 0, 0, 0, 0, . . . )). Show that the sequence
E := (~e(m))∞m=1 converges pointwise to ~0.

Here, for the meaning of “pointwise”, we are viewing `∞(R) as B(N,R). Since
the notation “(xi)

∞
i=1” for a real-valued sequence is simply convenient notation for the

function (i ∈ N) 7→ xi ∈ R, saying that the sequence E converges pointwise to ~0 is

the same as saying that for each i ∈ N, the real-valued sequence (e
(m)
i )∞m=1 converges to

0 ∈ R. In terms of the diagram above, this sequence is represented by the ith column of
the corresponding array.
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(c) Use part (b) and results from class to prove that if the sequence E converges
uniformly, then it must converge uniformly to ~0.

(d) Compute d∞(~e(m),~0) for all n, and use your answer to show that E does not
converge in `∞(R) to ~0. Hence, by part (c), E does not converge in `∞(R), period.

(e) Show, in either of the following two ways (your choice) that no subsequence of E
can converge in `∞(R):

(i) Compute d(~e(n), ~e(m)) for all m,n ∈ N with m 6= n. Use your answer to show that no
subsequence of E can be Cauchy, and hence that no subsequence of E can converge
in `∞(R),

(ii) Show that every subsequence of E converges pointwise to ~0, use your calculation in
part (d) to show that no subsequence of E converges uniformly to ~0, and then use
the same argument as and then use an argument similar to part (c)’s to show that
no subsequence of E can converge in `∞(R).

(f) Use part (e) to deduce that the closed unit ball B̄1(~0) ⊆ `∞(R) is not sequentially
compact, hence is not compact.

Thus B̄1(~0) is a closed, bounded subset of a complete normed vector space, but is not

compact. The Heine-Borel Theorem is false in infinite dimensions. More precisely, in the

statement of the Heine-Borel Theorem, if we replace (Rn, ‖ ‖) by an infinite-dimensional normed

vector space, the statement we obtain is false.

B3. For any set X, let X∞ denote the set of sequences in X. (Thus an element

~x ∈ X∞ is a sequence (xn)∞n=1, where xn ∈ X for all n ∈ N.) For a metric space (X, d),
define a relation ∼ on X∞ by

~x ∼ ~w if and only if lim
n→∞

d(xn, wn) = 0,

where ~x = (xn)∞n=1 and ~w = (wn)∞n=1. The same notation will be used below.

(a) Let (X, d) be a metric space.

(i) Prove that ∼ is an equivalence relation on X∞.

(ii) Let ~x, ~w ∈ X∞ and assume ~x ∼ ~w. Prove that if ~x is Cauchy, then so is ~w.

(iii) Let ~x, ~w ∈ X∞ and assume that (xn)∞n=1 converges to p ∈ X. Prove that (wn)∞n=1

converges to p if and only if ~x ∼ ~w.
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(b) Let (X, dX) and (Y, dY ) be metric spaces, and let f : X → Y be a uniformly
continuous function. Define f∞ : X∞ → Y ∞ by f∞

(
(xn)∞n=1

)
=
(
f(xn)

)∞
n=1

.

(i) Show that if ~x and ~w are sequences in X, and ~x ∼X ~w, then f∞(~x) ∼Y f∞(~w). (Since

we have two different metric spaces X and Y , we’ve added subscripts to distinguish the

two relevant equivalence relations.)

(ii) Show that if ~x ∈ X∞ is Cauchy, then so is f∞(~x).

B4. Extensions of continuous functions with dense domains. Recall that a subset
S of a metric space X is called dense if the closure of S is the entire space X (e.g. Q is
dense in R); equivalently, if every point in X\S is a cluster point of S.

Let (X, dX), (Y, dY ) be metric spaces, let S be a dense subset of X, and let f : S → Y
be a function. Below we will assume that f is continuous (“just plain” or uniformly). In
this problem we are interested in extensions of f to X—i.e. maps f̃ : X → Y such that
f̃S = f—that have the same continuity property that f has. (This generalizes a problem

considered last semester: if f : (a, b)→ R is a continuous function, does f extend continuously

to [a, b]? We saw that in this setting, if f is uniformly continuous then the answer is yes.)

(a) Let f : S → Y be a continuous function, and suppose that f̃1, f̃2 are continuous
extensions of f to X. Show that f̃1 = f̃2. (Thus a continuous extension of f to X, if any
exists, is unique.)

(b) Assume that (Y, dY ) is complete and that f : S → Y is uniformly continuous.
Prove that f has a unique continuous extension to X, and that the extended function f̃
is uniformly continuous.

Hint: In view of part (a), if we can establish existence of even a “just plain”
continuous extension f̃ , then f̃ will automatically be the unique such exten-
sion. Thus, the work will go into showing existence of a uniformly continuous
extension f̃ . To define an extension f̃ , it suffices to define f̃(x) for x ∈ X\S.
Since S is dense, for any such x there exists a sequence ~x := (xn)∞n=1 con-
verging to x. Using problem B3 and the completeness of (Y, dY ), show that
limn→∞ f(xn) exists and is independent of the choice of sequence ~x (i.e. if both
~x and ~w converge to x, then limn→∞ f(xn) = limn→∞ f(wn) ). Use this fact to
unambiguously define an appropriate element f̃(x) ∈ Y , and thereby to obtain
an extension f̃ : X → Y . Finally, to conclude that f̃ is uniformly continuous,
show that given any x,w ∈ X and any sequences ~x, ~w ∈ X∞ converging to
x,w respectively, dY (f̃(x), f̃(w)) = limn→∞ dY (f(xn), f(wn)), and then apply
a fact you established during your proof of B3(b)(i).
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B5. Length of a curve in a metric space. A curve in a metric space (X, d) is a
continuous function f : [a, b] → R (where [a, b] can be any closed, bounded, positive-
length interval in R). The length of a curve f : [a, b]→ X is defined to be

`(f) := sup

{
N∑
i=1

d(f(xi−1), f(xi)) : {x0, x1, . . . , xN} is a partition of [a, b]

}
(1)

provided that the supremum exists, i.e. that the set of sums in (1) is bounded. (When
this supremum exists, we say that the length of the curve exists, or is finite, or that the
curve has length; otherwise we say that the length of the curve does not exist, or is infinite,
or that the curve does not have length.) “Partition of [a, b]” in (1) has the same meaning
as in Riemann integration, but the sums in (1) are, in tgeneral, not Riemann sums of any
function g : [a, b]→ R.

When X = Rn, a curve f can be written in the form (f1, f2, . . . , fn), where fi s a
real-valued function on [a, b], 1 ≤ i ≤ n. (Alternatively, f = f1 ⊕ f2 ⊕ . . . ⊕ fn), where we

generalize our definiton of the direct sum of two functions from [a, b]→ R to the direct sum of

n such functions.) We say that f is continuously differentiable if each of the component
functions fi is continuously differentiable.

Prove that if (X, d) is Euclidean space En := (Rn, dEuc) = (Rn, d`2), and
f : [a, b] → Rn is a continuously differentiable curve, then the length of the curve f
exists and is equal to ∫ b

a

√
f ′1(t)

2 + f ′2(t)
2 + · · ·+ f ′n(t)2 dt.

(You will probably find this the most difficult problem I have assigned. Here are some hints
to reduce the difficulty: (1) the Mean Value Theorem is relevant, but does not generalize
to vector-valued functions. (2) Something that the MVT, if correctly used, will lead you
to write down, is not a Riemann sum, but can be related to a Riemann sum by applying “a
continuous real-valued function on a compact set is uniformly continuous” to the right function
and compact set.

If you have what you think is a quick proof that doesn’t involve the MVT and uniform

continuity, you are probably overlooking something, making an implicit assumption, etc.)

B6. Define f̃ : ([0,∞)× [0,∞)) \{(0, 0)} → R by f̃(x, y) = xy. Let f be the restriction of
f̃ to the domain (0,∞)× [0,∞); observe that domain(f̃) = domain(f)

∐
({0} × (0,∞)) =

domain(f)
∐

(positive y-axis).

Below, every subset of U ⊆ R2 is given the metric induced by a chosen norm on
R2. As shown earlier homework, all norms on R2 are equivalent (hence yield equivalent
metrics), and equivalent metrics on U determine the same continuous functions from U
to R. Thus the truth of the assertions you are asked to prove below does not depend

4



on which norm you choose on R2, so you may choose any norm on R2 that you find
convenient.

(a) Show that f̃ is the unique continuous extension of f to ([0,∞)× [0,∞)) \{(0, 0)}.
(Note that you need to show two facts about f̃ , not necessarily in the following order:
(i) that f̃ is continuous, and (ii) that any continuous extension of f to
([0,∞)× [0,∞)) \{(0, 0)} is the function f̃ .)

(b) Show that limx→0 (limy→0 f(x, y)) and limy→0 (limx→0 f(x, y)) exist but are not
equal.

(c) Show that there does not exist a continuous extension of f to [0,∞) × [0,∞) =
domain(f̃) ∪ {(0, 0)}. (This is why we do not define “ 00 ”.) Suggestion: Use the fact that
any such extension would also be an extension of f̃ .

(d) Define g̃ : ([0,∞)×R)\({0}×(−∞, 0])→ R by g̃(x, y) = xy. Let g be the restric-
tion of g̃ to the domain (0,∞)×R; observe that domain(g̃) = domain(g)

∐
({0} × (0,∞)).

Redo parts (a) and (c) with f̃ and f replaced by g̃ and g, respectively.

B7. Let ~a := (an)∞n=1 be a sequence in R for which
∑∞

n=1 an is conditionally convergent
(i.e. convergent but not absolutely convergent). Prove the following:

(a) There are infinitely many n for which an is positive, and infinitely many n for
which an is negative.

(b) Let (bi)
∞
i=1 be the subsequence of ~a consisting of the positive terms of ~a. (I.e.

bi = ani
, where ni is the index of the ith positive term of ~a.) Similarly let (ci)

∞
i=1 be

the subsequence of ~a consisting of the negative terms of ~a. Show that both of the series∑∞
i=1 bi,

∑∞
i=1 ci diverge.

(c) Let r be any element of the extended reals Rext. Prove that there exists a
rearrangement of

∑∞
n=1 an that converges in Rext to r. In other words, prove that (i) for

any real number r, there exists a bijection f : N→ N such that
∑∞

n=1 af(n) = r; (ii) there
exists a bijection f : N → N such that

∑∞
n=1 af(n) diverges to ∞ (i.e. which converges

in Rext to ∞), and (iii) there exists a bijection f : N→ N such that
∑∞

n=1 af(n) diverges
to −∞.

B8. Let (a(m,n))(m,n)∈N×N be a “doubly indexed sequence” in R—a map A : N×N→ R,
where a(m,n) = A(m,n). It is sometimes useful to picture (a(m,n)) as an “infinity-by-
infinity matrix”. In this problem we are interested in attaching meaning to the notation
“
∑

m,n∈N×N a(m,n)”, also written
∑

m,n a(m,n) or
∑∞

m,n=1 a(m,n). Our notation “a(m,n)” is
sometimes just written “am,n”.

Definition. The doubly-indexed series
∑

m,n a(m,n) is absolutely convergent (or converges
absolutely) if there exists a bijection f : N → N ×N such that

∑∞
j=1 af(j) is absolutely

convergent. (Said more loosely, we are calling the doubly-indexed series absolutely con-
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vergent if there is some order in which we can add up the entries of the “infinite matrix”
(a(m,n)) as the terms of an absolutely convergent singly-indexed series.)

(a) Prove that if
∑

m,n a(m,n) converges absolutely and f, g : N → N × N are bijec-
tions, then

∑∞
j=1 af(j) =

∑∞
j=1 ag(j). Hence if

∑
m,n a(m,n) converges absolutely, we can

unambiguously define ∑
m,n

a(m,n) =
∞∑
j=1

af(j)

where f is any bijection N→ N×N.

(b) Explain why we should not attach any numerical value (in R) to the notation
“
∑

m,n a(m,n)” if this doubly-indexed series is not absolutely convergent. (Hint: Prob-
lem B7(c).)

(c) Prove that if
∑

m,n a(m,n) is absolutely convergent then (i) for all m ∈ N, the series∑∞
n=1 a(m,n) converges, (ii) for all n ∈ N, the series

∑∞
m=1 a(m,n) converges, and (iii)

∑
m,n

a(m,n) =
∞∑

m=1

(
∞∑
n=1

a(m,n)

)
=
∞∑
n=1

(
∞∑

m=1

a(m,n)

)
.

(d) Let
∑∞

n=1 bn,
∑∞

n=1 cn be absolutely convergent series in R. Prove that
∑

m,n bmcn is
absolutely convergent, and that

∑
m,n

bmcn =

(
∞∑
n=1

bn

)(
∞∑
n=1

cn

)
.

Remark. In the absolutely convergent case, enumerating N×N in the order

(1, 1),

(1, 2), (2, 1),

(1, 3), (2, 2), (3, 1),

...

(i.e. the first term of the enumeration is the one on the first line; the next two terms are
the ones on the second line, from left to right; the next three terms are the ones on the
third line, from left to right; etc.) leads us to

∑
m,n∈N

a(m,n) =
∞∑
k=1

( ∑
m+n=k

a(m,n)

)
. (2)

(The notation above for the inner sum on the right-hand side of (2) is understood to
mean the sum of all terms whose index-pair (m,n) lies in N×N and satisfies m+n = k.
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We could also write this inner sum as
∑k−1

m=1 a(m,k−m), or as
∑k−1

n=1 a(k−n,n), or with other

dummy variables for the index of summation:
∑k−1

j=1 a(j,k−j) etc.) One of the main reasons
that the conclusions of problem B8 are important is the following application to power
series, in which the enumeration scheme in (2) appears naturally. (For power series, we
index the terms using N ∪ {0} rather than N, but aside from the slight bookkeeping
change, which includes starting the outer sum in (2) at k = 0 = 0 + 0 instead of at
k = 2 = 1 + 1, this clearly makes no difference in the conclusions of B8.)

Suppose you are multiplying two polynomials together, say a0 + a1x + · · · + aNx
N

(i.e.
∑N

n=0 anx
n) and b0 + b1x + · · · + bMxM (i.e.

∑M
m=0 bmx

m). After multiplying out,
you generally rewrite the result by grouping together all the terms with a given power of
x, which is the finite-series statement(

N∑
n=0

anx
n

)(
M∑

m=0

bmx
m

)
=

N+M∑
k=0

( ∑
n+m=k

anbm

)
xk.

We can extend this fact about products of polynomials to a definition of the formal
product of two formal power series: the formal product of

∑∞
n=0 anx

n and
∑∞

n=0 bnx
n

is defined to be
∑∞

k=0

(∑
n+m=k anbm

)
xk, multiplying the formal power series as if the

they were “polynomials with infinitely many terms”. Note that this definition does not
require any convergence; it amounts to no more than defining a sequence of coefficients
(ck =

∑
n+m=k anbm)∞k=0. But since power series are absolutely convergent on the their

open intervals of convergence, parts (a) and (d) imply that on the smaller of the open
intervals of convergence of the power series

∑
n anx

n and
∑

n bnx
n, the formal product

converges to the product of the functions F : x 7→
∑∞

n=0 anx
n and G : x 7→

∑∞
n=0 bnx

n.
Hence, in this case, the formal product is the unique power-series representation, centered
at 0 and with variable x, of the product function FG.

9. Let
∑∞

n=0 bn(x − a)n and
∑∞

n=0 cn(x − a)n be power series with positive radii of con-
vergence R1 and R2, respectively, and let f and g, respectively, be the analytic functions
represented by these power series on the corresponding open intervals of convegence.

(a) Show that f +g is analytic at a, and that its power-series representation centered
at a Taylor series centered at a has radius of convergence R ≥ min{R1, R2).

(b) Repeat part (a), but for the prodiuct fg.

10. Last semester we proved that exey = ex+y for all x, y ∈ R. Give another proof of this
fact using power series and problem B8(d).
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