
Differential forms on R3

Notes for MAT 4930—Curves and Surfaces—Spring 2019

In these notes, elements of R3 are denoted in boldface; elements of general vector
spaces are not.

1 Multi-covectors

Definition 1.1 Let V, Z be vector spaces, k a positive integer, and

B :

k-fold Cartesian product︷ ︸︸ ︷
V × V × · · · × V → Z (1)

a function. (On your first reading, to make the ideas as concrete as possible, mentally
replace Z by R. Other Z’s will not enter till the next section of these notes.) We
call B multilinear if for 1 ≤ i ≤ k, when all variables v1, v2, . . . , vk in the expression
B(v1, v2, . . . , vk) are held fixed except the ith, the resulting function of the ith variable is
a linear map from V to Z.

For k = 1, a multilinear function is just a linear map. For k = 2, we also call a
multilinear function bilinear; for k = 3, a multilinear function is also called trilinear, etc.
When k is not given a specific value, the term “k-linear” is also used.

Example 1.2 With notation as above, a function B : V × V → Z is bilinear (or multi-
linear) if for all w ∈ V , the two maps from V to Z given by

v 7→ B(v, w)

and v 7→ B(w, v)

are linear. A function B : V ×V ×V → Z is trilinear (or multilinear) if for all w1, w2 ∈ V ,
the three maps from V to Z given by

v 7→ B(v, w1, w2),

v 7→ B(w1, v, w2),

and v 7→ B(w1, w2, v)

are linear.

Definition 1.3 Notation as in Definition 1.1. A bilinear function B : V × V → Z is
called antisymmetric if

B(v, w) = −B(w, v) (2)

for all v, w ∈ V . For k ≥ 2, a multilinear function is called alternating (or antisymmet-
ric, or totally antisymmetric) if whenever all but two of the variables in the expression
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B(v1, v2, . . . , vk) are held fixed, the resulting function of the remaining two variables is
antisymmetric.

It is convenient not to have to say “assume k ≥ 2” when referring to alternating
k-linear functions, so we call linear maps from V to W (the case k = 1) alternating as
well, even though there aren’t two variables to interchange.

Remark 1.4 Note that the antisymmetry condition in equation (2) implies thatB(v, v) =
0 for all v ∈ V . Similarly, for any k > 2, if B is k-linear and alternating, and v1, v2, . . . vk ∈
V , and there are two indices i 6= j for which vi = vj, then B(v1, v2, . . . , vk) = 0.

Example 1.5 An alternating trilinear map B : V × V × V → R obeys the conditions

B(v1, v2, v3) = −B(v2, v1, v3) (swapping the first and second vectors),

B(v1, v2, v3) = −B(v3, v2, v1) (swapping the first and third vectors),

B(v1, v2, v3) = −B(v1, v3, v2) (swapping the second and third vectors),

for all v1, v2, v3 ∈ V . Using these relations, it is easy to show that if σ is a permuta-
tion of {1, 2, 3}, then B(vσ(1), vσ(2), vσ(3)) = ±B(v1, v2, v3), where the sign is the sign of
the permutation σ. (If you don’t know what “sign of a permutation” means, just ig-
nore the last statement.) This generalizes to k-linear alternating multilinear functions
V × V × · · · × V → Z for any vector space Z and any k > 0.

Remark 1.6 For any nonempty set S, the set Func(S,R) of all functions from S to R
is a vector space. (The notation “Func(S,R)” is just for these notes, not universal.) The
vector-space operations are the usual operations on functions: for f, g ∈ Func(S,R) and
c ∈ R, the functions f + g ∈ Func(S,R) and cf ∈ Func(S,R) by

(f + g)(s) = f(s) + g(s) for all s ∈ S,
(cf)(s) = c f(s) for all s ∈ S.

As the student may check, for any vector space V and positive integer k, the set of all k-
linear functions from V ×V ×· · ·×V to R is closed under addition and under multiplication
by scalars, and thus is a subspace of Func(V × V × · · · × V,R). For this reason, we often
use the terminology “the space of k-linear functions from V × V × · · · × V to R” for this
set. Similarly, we speak of the space of alternating k-linear functions from V ×V ×· · ·×V
to R, because the set of such functions is closed under the above operations, and is thus
a subspace of the space of all k-linear functions from V × V × · · · × V to R. All of the
preceding (in this Remark) remains true if the codomain R is replaced by a general vector
space.

Suppose now that V has (finite) dimension n > 0, and let {u1, . . . , un} be a basis.
Suppose B is a k-linear alternating function from V ×V ×· · ·×V to R. Given any vectors
v1, . . . vk ∈ V , we can express each vi as a linear combination of the given basis vectors,
and then use the multilinearity of B to express B(v1, v2, . . . , vk) as a linear combination
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of expressions of the form B(ui1 , ui2 , . . . , uik), where (i1, . . . , ik) ranges over all ordered
k-tuples of integers in the set {1, 2, . . . , n}. If k > n, then for any such k-tuple at least
two of the indices ij must be equal, so two of the vectors uij must be equal, so by Remark
1.4, B(ui1 , ui2 , . . . , uik) = 0. Since a linear combination of 0’s is 0, this implies that
B(v1, v2, . . . , vk) = 0. But the vi were arbitrary vectors in V . Hence

If k > dim(V ), then the only alternating k-linear
function from V × · · · × V to R is the zero function.

(3)

Definition 1.7 (For these notes; not universal) Let k ≥ 0 be an integer and let
p ∈ R3. If k > 0, a k-covector at p is an alternating multilinear function

φp :

k-fold Cartesian product︷ ︸︸ ︷
TpR3 × TpR3 × · · · × TpR3 → R.

(Thus a 1-covector at p is just a covector at p.) We define “0-covector at p” to mean
“real number”. We will write Akp for the space of all k-covectors at p; the word “space”
here is a reminder that (by Remark 1.6 in the case k > 0) the set of all k-covectors at
p is a vector space. In the notation “Akp”, the k is just a superscript, not an exponent;
don’t say “to the k”.

Note that by our definition of “0-covector”, A0
p = R.

A k-covector is said to have degree k.

If φp is a k-covector at p, and k > 3, then by statement (3) we have φp = 0, where
this “0” is the zero-element of the vector space Akp. Thus:

For k > 3, the space Akp is a zero vector space. (4)

(A “zero vector space”, also called a “trivial vector space”, is a vector space whose only
element is its zero element. We often refer to any such vector space as “the” zero vector
space, since there is an obvious and unique bijection between any two sets having just
one element each.)

For terminological simplicity, we allow the term “multi-covector” to mean any element
of any of the spaces Akp (even if k = 0 or k = 1).

2 Wedge product at a point

For each p ∈ R3 and all integers k, l ≥ 0, we define a binary operation

∧ : Akp ×Alp → Ak+lp ,

(φp, ψp) 7→ φp ∧ ψp, (5)

called wedge product, as follows. To make the formulas below easier to read, we omit the
subscript p from tangent vectors and (multi-)covectors.
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1. For c ∈ A0
p and ψ ∈ Alp, we define c ∧ ψ to be cψ ∈ Alp = Ak+lp . Similarly, if l = 0

then for φ ∈ Akp and c ∈ Alp = A0
p, we define φ ∧ c to be cφ ∈ Akp = Ak+lp .

2. For φ, ψ ∈ A1
p we define φ ∧ ψ : TpR3 × TpR3 → R by

φ ∧ ψ (v,w) = φ(v)ψ(w)− φ(w)ψ(v) (6)

The student should check that, with this definition, φ ∧ ψ is indeed a bilinear,
alternating function from TpR3 × TpR3 to R, i.e. an element of A2

p = A1+1
p .

3. For φ ∈ A1
p and ψ ∈ A2

p we define φ ∧ ψ : TpR3 × TpR3 × TpR3 → R by

φ ∧ ψ (u,v,w) = φ(u)ψ(v,w) + φ(v)ψ(w,u) + φ(w)φ(u,v) (7)

(Observe that on the right-hand side of (7), we have a sum over cyclic permutations
of {u,v,w}. We would have obtained the same value had we summed over all
permutations, analogously to (6), and divided the answer by 2.) The student should
check that, with this definition, φ∧ψ is indeed a trilinear, alternating function from
TpR3 × TpR3 × TpR3 to R, i.e. an element of A3

p = A1+2
p .

4. For φ ∈ A2
p and ψ ∈ A1

p we define φ ∧ ψ to be ψ ∧ φ, which we have just defined
above.

5. For φ ∈ Akp and ψ ∈ Alp in all cases not handled above, we have k + l > 3, so Ak+lp

is a zero vector space and we define φ ∧ ψ to be the zero element of this space.

Note that what we have actually defined is a collection of maps that we could have
labeled “∧k,l” according to the degrees of multi-covectors being wedged together. These
labeled maps will be referred to once below, in a footnote. However, labeling them
wherever “∧” appears would lead to getting lost in a forest of notation.

With wedge-product now defined, the student may check that the following properties
hold:

1. For all k, l ≥ 0, the map (5) is bilinear. In particular, the left-distributive and
right-distributive laws hold.

2. Wedge product is associative in the following sense1: for all k, l,m ≥ 0, and all
φ ∈ Akp, ψ ∈ Alp, µ ∈ Amp , we have

(φ ∧ ψ) ∧ µ = φ ∧ (ψ ∧ µ). (8)

1The words “in the following sense” have been added since, in equation (8), up to four different wedge-
product maps are involved: reading from left to right, the first ∧ is the one we could have labeled ∧k,l,
the second is the one we could have labeled ∧k+l,m, the third is the one we could have labeled ∧k,l+m,
and the fourth is the one we could have labeled ∧l,m.
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3. If φ ∈ Akp and ψ ∈ Alp then

ψ ∧ φ = (−1)klφ ∧ ψ. (9)

(This can be stated by saying: under wedge product, even-degree covectors commute
with all covectors, and odd-degree covectors anticommute with each other.) Note
that for k+ l ≤ 3, the only case in which (−1)kl is negative is the case k = l = 1; in
all other cases this sign is positive. If k + l > 3 then both sides of equation (9) are
zero, so the equality is trivial.

Observe that to check these properties there is just a small set of pairs (k, l) or
triples (k, l,m) for which one needs to check. For example, both sides of equation (8) are
automatically zero if k + l + m > 3, so one need only check the case k = l = m = 1
and the cases in which (at least) one of k, l,m is zero. The latter cases follow from the
definition of “wedge with a 0-covector” and the bilinearity of the map (5) (once one has
established bilinearity).

3 Differential forms

As defined in class, a 1-form is a covector field: a function φ : R3 →
⋃

p∈R3 A1
p, which

whose value at p we chose to denote φp rather than φ(p), satisfying the requirement
that φp lie in A1

p and satisfying a certain smoothness condition. A general k-form on
R3 is defined by just replacing the superscript 1 with k (and specifying the smoothness
condition, which we will do later). In other words:

Definition 3.1 For k ≥ 0, a k-form on R3 is a (smooth) k-covector field, where a k-
covector field is a map φ : R3 →

⋃
p∈R3 Akp such that φp := φ(p) ∈ Akp for each p ∈ R3.

A k-form is also called a differential form of degree k.

For k ≥ 0, let Ãk denote the (vector) space of all (not necessarily smooth) k-covector
fields on R3. (The simpler notation Ak, without the tilde, is being held in reserve for the
space of smooth k-covector fields.) Temporarily, let us ignore the eventual smoothness
condition and refer to elements of Ãk as k-forms. With this understood, for all integers
k, l ≥ 0 we define a binary operation

∧ : Ãk × Ãl → Ãk+l,
(φ, ψ) 7→ φ ∧ ψ,

again called wedge product, using the pointwise-principle: for every p ∈ R3, we define

(φ ∧ ψ)p = φp ∧ ψp ∈ Ãk+lp .

It is easily seen that the algebraic properties of wedge-product of covectors (bilinearity, as-
sociativity, and the “signed-commutativity” property (9)) are inherited by wedge-product
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of differential forms. In fact, the bilinearity property can be upgraded to “F -bilinearity”:
(fφ+gψ)∧µ = fφ∧µ+gψ∧µ and φ∧ (fψ+gµ) = fφ∧ψ+gφ∧µ, where f, g : R3 → R
are arbitrary functions (that’s what the “F” stands for), not just real numbers.

The differentials of the coordinate functions x, y, z provide us with an easy way of
writing down a basis of each of the spaces Akp for p ∈ R3 and 1 ≤ k ≤ 3, and thereby

understand the spaces Ãk. Writing dxp, dyp, dzp for the covectors at p given by these
differentials2, it follows from classwork that that {dxp, dyp, dzp} is a basis of A1

p (in
particular, this space is three-dimensional). Using definitions and facts established earlier
in these notes, it is then not hard to show that {dxp ∧ dyp, dxp ∧ dzp, dyp ∧ dzp}
is a basis of A2

p (thus this space is also three-dimensional) and that the singleton-set
{dxp ∧ dyp ∧ dzp} is a basis of A3

p (a space that is, therefore, one-dimensional).3 Using
the pointwise-principle, it follows that

• every zero-form on R3 is a function f : R3 → R, and conversely every such function
is a 0-form;

• every 1-form on R3 can be written uniquely as f dx+ g dy+h dz for some functions
f, g, h : R3 → R, and conversely every such expression is a 1-form;

• every 2-form on R3 can be written uniquely as f dx∧ dy + g dx∧ dz + h dy ∧ dz for
some functions f, g, h : R3 → R, and conversely every such expression is a 2-form;

• every 3-form on R3 can be written uniquely as f dx ∧ dy ∧ dz for some function
f : R3 → R, and conversely every such expression is a 3-form.

We have already defined what “smooth” (C∞) means for a function f : R3 → R. We
now define a 1-form f dx+ g dy+ h dz to be smooth if the coefficient functions f, g, h are
smooth; define a 2-form f dx ∧ dy + g dx ∧ dz + h dy ∧ dz to be smooth if the coefficient
functions f, g, h are smooth; and define a 3-form f dx ∧ dy ∧ dz to be smooth if the
coefficient function f is smooth.

For k ≥ 0, let Ak ⊂ Ãk denote the set of smooth k-forms.
Given two differential forms φ ∈ Ak, ψ ∈ Al with k + l ≤ 3, using F -bilinearity and

the “signed commutativity” property it is easy to express the coefficient function(s) of
φ ∧ ψ as a sum and/or difference of (ordinary) products of the coefficient-functions of φ
and ψ. Since sums, differences, and products of smooth real-valued functions are smooth,
it follows that the coefficient function(s) of φ∧ψ is/are smooth. Hence φ∧ψ lies in Ak+l
(not just Ãk+l). Thus, the set of smooth differential forms is closed under wedge-product.

Finally, we redefine “k-form” and “differential form” to mean what have have called
“smooth k-form” and “smooth differential form” above.

2With this notation one must remember that p is a subscript here for the expressions dx, dy, dz, not
for x, y, z. Notation such as dx|p or (dx)p (etc. for y and z) would be less ambiguous but would make
various formulas in these notes harder to comprehend).

3Although it is not hard to show that the asserted bases are bases, a proof would require a digression
that would make these notes even longer.
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