
MAT 4930—Curves and Surfaces—Spring 2019
Non-book homework problems

1. Show that if real-valued functions f and g on R3 are C∞, then so are f + g and fg.
(Hint for the product: induction.)

2. Let a, b be real numbers, and define α : R → R3 by α(t) = (a cos t, a sin t, bt). Let C
be the Curve parametrized by α. In class we saw that if a > 0, then C is a helix if b 6= 0,
and a circle in the xy plane if b = 0.

(a) What is C if a = 0 and b 6= 0?

(b) What is C if a = 0 = b?

(c) Describe C if a < 0 and b 6= 0. For a given b, how does this C compare with the
Curve we would get if a were replaced by |a|? Is C still a helix? If so, is its “handedness”
the same as if a were replaced by |a|, or the opposite?

(d) Show that unless a = 0 = b, the curve α is a regular parametrization of C. (Since,
by definition, α parametrizes C, all you need to show is that α is a regular curve.)

3. Let I be an open interval β : I → R2 a smooth curve in the plane. Thus
β(t) = (β1(t), β2(t)), where the βi : I → R are C∞. Define α : I → R3 by

α(t) = (t, β1(t), β2(t)). The Curve C̃ in R3 parametrized by α is called the graph of

β. Show that α is a regular parametrization of C̃, regardless of whether β is regular.

Remark. If we identify R×R2 with R3 by identifying (x, (y, z)) with (x, y, z), then

the definition of α can be written more simply as α(t) = (t, β(t)), and C̃ is exactly the
set of points {(t, β(t)) : t ∈ I}. The similarity of this with the definition of “graph of a

real-valued function of one variable” is why C̃ is called the graph of β.

Once we define “smooth Curve” in class, the upshot of the above problem will be
that the graph C̃ of a smooth curve β in R2 is always a smooth Curve in R3, whether or
not the Curve C in R2 parametrized by β is smooth.

4. In the setup of O’Neill’s problem 1.6/8 there is a 1-1 correspondence “(1)” between
vector fields and 1-forms, and a 1-1 correspondence “(2)” between vector fields and 2-
forms. These correspondences are also valid pointwise. (I.e. they are valid at each point
p ∈ R3 if you replace vector fields, 1-forms, and 2-forms, respectively, with tangent vectors
at p, cotangent vectors at p, and what I called “2-covectors at p” in class.)

Let vp,wp be tangent vectors at p ∈ R3, let φp, ψp be the corresponding cotangent
vectors using correspondence (1), and let up ∈ TpR3 be the tangent vector corresponding
to φp ∧ ψp using correspondence (2). In terms of the “classical” vector operations you
learned in Calculus 3 (and/or physics classes), give a simple formula for u in terms of
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v and w. (Of course, if we let the point p vary, the analogous formula holds for vector
fields.)

5. Again using the 1-1 correspondences in O’Neill’s problem 1.6/8, show the following:

(a) The fact that “d2 = 0 on 0-forms”, i.e. that d(df) = 0 for every (smooth) function
f : R3 → R, is equivalent to the fact that curl(grad f) = 0 for all such f . (Here grad f
is the gradient of f .)

(b) The fact that “d2 = 0 on 1-forms” is equivalent to the fact that div(curl(V )) = 0
for all vector vields V .

6. (a) Let f : R→ R be a (smooth) function, and define α : R→ R by

α(t) = (f(t) cos t, f(t) sin t, f(t)). (1)

If f is monotone, the Curve parametrized by α can reasonably be called a “conical helix”.
Figure out why.

For the rest of this problem, f and α are as in equation (1).

(b) Write down, in terms of f , the integral that gives the arclength function t 7→ s(t)
of the curve α, based at t = 0.

(c) Show that α is regular provided there is no t0 ∈ R for which f(t0) = f ′(t0) = 0.

(d) For the case f(t) = et, qualitatively sketch the Curve parametrized by α. (Don’t
worry about drawing it to scale.)

(e) Again for the case f(t) = et, find an explicit formula for s(t), solve for t in terms
of s, and write down the corresponding unit-speed reparametrization β of α.

(f) What is the domain of β in part (e)? You should find that it is an interval of the
form (−b,∞), where b > 0. What is the value of b telling you geometrically?

7. Read the following definitions, example, and remark.

Definition 1. Let a, b ∈ R, with a < b, and let k ≥ 0 be an integer. A continuous
function α : (a, b) → Rn is a piecewise regular curve if there are finitely many points
t0 < t1 < · · · < tN−1 < tN in [a, b], with t0 = a and tN = b, such that

(i) α is smooth on each subinterval (tj−1, tj), 1 ≤ j ≤ N , and

(ii) for 1 ≤ j ≤ N , the one-sided limit of α′|(tj−1,tj) exists at each endpoint of (tj−1, tj)
and is nonzero.

Note that every regular curve α : (a, b)→ Rn is piecewise regular (just take N = 1 above).
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More generally, if I ⊂ R is an interval (not necessarily open or bounded), we say
that α : I → Rn is a piecewise regular curve if the restriction of α to every bounded, open
subinterval of I is piecewise regular.

Note that if the interval I ⊂ R is open and α : I → Rn is smooth, it is possible for
α to be piecewise regular yet not regular: at any given t ∈ (a, b), the two one-sided limits
of α′ exist and are equal, but they may be zero.

Definition 2. A Curve C ⊂ Rn is piecewise smooth if it admits a piecewise regular
parametrization.

Just as for curves, “smooth” is a special case of “piecewise smooth”. But typically, a
piecewise-smooth Curve is a concatenation of a bunch of smooth Curve-segments (“con-
catenation” meaning here that the terminal point of the first segment coincides with the
initial point of the second segment, etc.).

Example. Let I ⊂ R be an open interval and α : I → Rn a smooth curve for which
α′(t) is zero at finitely many points t1 < t2 < . . . tk, but is nonzero for all other t. Even
though there are points at which α′(t) = 0, we can reparametrize α by arclength, with
the reparametrized curve being a continuous but not necessarily smooth map from some
interval into Rn. Specifically, let φ : I → R be the arclength function of α based at a
point t∗ ∈ I. Then φ is a strictly increasing, continuous function from I to some open
interval J . It is not hard to show that the inverse of any such function is continuous.
Hence the function β := α ◦φ−1 : J → Rn is continuous, and a faithful reparametrization
of α. However, φ′(tj) = ‖α′(tj)‖ = 0 for all j, so φ−1 is not differentiable at the points
sj = φ(tj). The Chain Rule Theorem does not apply in this situation (its hypotheses are
not met); the function β may or may not be differentiable at a given sj.

Continuing with this example, the real-valued functions t 7→ ‖α′(t)‖ and s 7→ ‖β′(s)‖
are smooth on I \ {t1, . . . , tk} and J \ {s1, . . . sk}, respectively. The vector-valued func-

tions t 7→ T(α)(t) := α′(t)
‖α′(t)‖ and s 7→ T(β)(s) := β′(s) = T(α)(φ−1(s)) are defined on

I \ {t1, . . . , tk} and J \ {s1, . . . sk} respectively, and are smooth on these respective do-
mains. The limits limt→tj±T(α)(t) and lims 7→sj± β

′(s) may or may not exist, but for a

given j and choice of sign in “±”, either limt→tj±T(α)(t) = lims 7→sj± β
′(s) (with both

limits existing) or neither limit exists.
If all 2k of the one-sided limits lims 7→sj± β

′(s) exist (which, by the preceding, we can

determine from the existence or non-existence of limt→tj±T(α)(t)), then β is piecewise

regular. (No such limit, if it exists, can be zero, since if limt→tj±T(α)(t) exists, then

‖ limt→tj±T(α)(t)‖ = limt→tj± ‖T(α)(t)‖ = limt→tj±(1) = 1.) In this case, the Curve C
parametrized by α and β is (at least) piecewise smooth.

Suppose now that, additionally, α is one-to-one. Then the only one-to-one curves
with image C are faithful reparametrizations of α (maps of the form α ◦ h where h is
a continuous bijective map from some interval J to I).1 Recall that, by definition, a

1To see why “one-to-one” is relevant to the continuity of h, think about a smooth curve α that crosses
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smooth Curve admits a regular parametrization γ. For such γ, both the numerator and
denominator of γ′(u)

‖γ′(u)‖ =: T(γ)(u) are smooth functions, and the denominator is nowhere

zero, so T(γ) T(γ) is continuous (in fact, smooth). Hence if our Curve C is smooth,
and γ is a regular parametrization, and uj ∈ domain(γ) corresponds to tj ∈ I, then
limt→tj+ T(α)(t) = limu→uj+ T(γ)(u) = limu→uj−T(γ)(u) = limt→tj−T(α)(t). Thus if α is

one-to-one, a necessary condition for C to be a smooth Curve is that limt→tj+ T(α)(t) =

limt→tj−T(α)(t) (equivalently, that limt→tj T(α)(t) exists). Had we taken the definition of
“smooth curve” (lower case) to be a map α : I → Rn whose first derivative is continuous,
rather than requiring α to be C∞ (which we did as a matter of convenience), then the
necessary condition above would have been sufficient as well.

Remark. In the example above, even if the limits limt→tj±
α′(t)
‖α′(t)‖ exist, the hypothesis

that α is C∞ is not enough to ensure that the one-sided limits of β′′ and higher-order
derivatives of β exist at the points sj. This is why, in Definition 1, we did not require
that the one-sided limits of all derivatives of α exist at the points tj; we would have
been prevented from concluding that the reparametrization β is piecewise regular. For
applications of the term “piecewise regular” in this course, it would be inconvenient to
have to worry about whether the one-sided limits of higher-order derivatives exist.

Definition 3. Let I ⊂ R be an interval, let α : I → Rn be a piecewise regular curve,
let C be the piecewise smooth Curve parametrized by α, and let T(t) = α′(t)

‖α′(t)‖ wherever

α′(t) 6= 0. If t0 ∈ I is a point at which limt→t0+ T(t) 6= limt→t0−T(t), we say that α
has either a corner or cusp at t0: a cusp if limt→t0+ T(t) = − limt→t0−T(t), and a corner
otherwise. If α is one-to-one, we correspondingly call the point α(t0) a corner or cusp of
C.

Note that, in the “α is one-to-one” case, if there are any corners or cusps then C is
only piecewise smooth; C cannot be smooth, because of the necessary condition mentioned
earlier.

8. Let a, b ∈ R, with a > 0. In class we computed the curvature κ and torsion τ of the
curve α defined by α(t) = (a cos t, a sin t, bt) (a helix if b 6= 0, a circle if b = 0). Solve for
a and b in terms of κ and τ , and rewrite the formula for α(t) in terms of κ and τ .

9. Let β : I → R3 be a regular curve, let λ be a positive real number, and define a curve
γ : I → R3 by γ(t) = λβ(t).2 The Curves parametrized by β and γ are similar in the sense
of Euclidean geometry: one is simply a “rescaled” version of the other. (Qualitatively,
the two curves have essentially the same shape, but [unless λ = 1] different size.)

(a) Let κβ : I → R and κγ : I → R denote the curvature functions of β and

itself. You can parametrize the image by a curve γ = α ◦ h that makes a sharp turn at a crossing-point
instead of continuing through in the same direction, but h won’t be continuous.

2The letter ‘γ’ is a lower-case gamma.
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γ respectively. Find the precise relation between κγ and κβ, and deduce that if κβ is
everywhere positive, then so is κγ.

(b) Assume that κβ is everywhere positive, so that the torsion function τβ : I → R
of β is defined (and hence, by part (b), so is the torsion function τγ : I → R). Find the
precise relation between τγ and τβ.

10. Recall that (i) a curve α : R → Rn is periodic if there exists some ρ > 0 (called a
period of α) such that α(t + ρ) = α(t) for all t ∈ R, and that (ii) the image of a regular
periodic curve is a smooth Curve. For a periodic curve, the Chain Rule implies that
α′(t+ρ) = α′(t), and hence T(ρ) = T(0)) as well.3 A regular periodic curve α always has
a minimal period ρ0, and we define the total curvature of the image Curve C is defined
to be the total curvature of α|[0,ρ0] (cf. O’Neill problem 17(d)).

For smooth closed plane curves whose curvature function is strictly positive, the
total curvature has topological significance. (More generally, even if the curvature is
zero somewhere, it’s still true that the total “plane curvature”

∫ ρ
0
κ̃(s) ds has topological

significance.) Suppose that α : R → R2 is a regular periodic curve whose curvature
function is strictly positive. Show that the total curvature of the image curve C is 2πn
for some integer n > 0. Hint: Everything you need is in O’Neill problem 2.3/ 8.

Note: O’Neill problem 2.4/18 says that the total curvature of such a curve is 2π.
That’s correct for simple closed smooth curves (and is harder to show than the “2πn”
above), but not for smooth closed curves that are allowed to cross themselves.

11. Let a > 0, b 6= 0 be real numbers, and let α : R → R3 be the helix defined by
α(t) = (a cos t, a sin t, bt).

(a) Show that a curve β : R→ R3 is congruent to α if and only if there exist a point
p ∈ R3 and a frame {e1, e2, e3} of R3 such that

β(t) = p + a(cos t e1 + sin t e2) + bt e3 . (2)

(b) Under what conditions on the point p ∈ R3 and a frame {e1, e2, e3} in equation
(2) is there an orientation-preserving isometry F : R3 → R3 such that β = F ◦ α?

(c) Let p̃ be a point R3, let {ẽ1, ẽ2, ẽ3} be a frame of of R3, let ã, b̃ be real numbers
with ã > 0, and let β̃ : R→ R3 be the curve defined by

β̃(t) = p̃ + ã(cos t e1 + sin t e2) + b̃t e3 for all t ∈ R. (3)

What are the most general conditions on p̃, {ẽ1, ẽ2, ẽ3}, ã, and b̃, under which β̃ is
congruent to α?

12. Let M be a surface in R3, let p be a point of M , and let V be an open neighborhood
of p in M on which there is unit normal vector field U , and let SM be the shape operator

3In class, we used the letter T for what we’re now calling ρ (rho); I’ve changed the letter because we
have an abundance of uses of ‘T ’, and the handwritten version of “T(T )” is hard to read.
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of M determined by U . (Here, as in class, “open neighborhood of p in M” just means
“open set in M that contains p”.) Let F : R3 → R3 be an isometry, and let M̄ = F (M).
Establish the facts below. If you get stuck on any part, assume the asserted fact in order
to do later parts.

(a) The set M̄ is a surface.

(b) For each p ∈ M , the tangent map F∗p carries TpM to TF (p)M̄. (I.e. {F∗p(v) | v ∈
TpM} = TF (p)(F (M)).

(c) If V is an open subset of M , then F (V) is an open subset of M̄ .

(d) If Z is a Euclidean vector field on an open subset V ⊂ M , then the “set-theoretic
vector field” F∗Z on F (V) defined by (F∗Z)(q) = F∗(Z(F−1(q))) is infinitely dif-
ferentiable, hence meets our criteria to be called a (true) Euclidean vector field on
F (V ). Furthermore:

(i) If Z is tangent to M , then F∗Z is tangent to M̄ .

(ii) If Z is normal to M , then F∗Z is normal to M̄ .

(ii) If ‖Z(p)‖ = 1 for all p ∈ V , then ‖(F∗Z)(q)‖ = 1 for all q ∈ F (V).

(e) Let U be a unit normal vector field on V (where “normal” means “normal to M”).
By part (d), the vector field Ū := F∗U is a unit normal vector field on F (V)
(where “normal” means “normal to M̄”). On V , let S be the shape operator of M
determined by U ; similarly, on F (V), let S̄ be the shape operator of M̄ determined
by Ū . Let p ∈ V . Then:

(i) For all v ∈ TpM , we have F∗(Sp(v)) = S̄F (p)(F∗v).

(ii) The principal curvatures, Gaussian curvature, and mean curvature of M ′ at
F (p) have the same values as the corresponding curvatures of M at p.

Said another way: isometries of R3 preserve shape operators, principal curvatures,
Gaussian curvatures, and mean curvatures of surfaces. (Really we should say “preserve,
up to sign,” for everything except the Gaussian curvature, since the other objects are determined
only up to an overall factor of ±1.)
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