MTG 6256, Fall 2004: Non-book Problem 1
 (corrected 8/27/04)

Definition. For $p \in \mathbf{R}^{3}$, let $\mathcal{F}_{p}=\{f \mid f$ is a smooth real-valued function defined on some open neighborhood of $p\}$. Define an equivalence relation \sim on \mathcal{F}_{p} by declaring $f \sim g$ if there exists an open neighborhood of p on which f and g coincide. An equivalence class under this relation is called a smooth germ, and the set $\mathcal{G}_{p}:=\mathcal{F}_{p} / \sim$ of equivalence classes is called the space of smooth germs of functions at p. Note that all elements of a given equivalence class have the same value at p, so if $\hat{f} \in \mathcal{G}_{p}$, the number $\hat{f}(p)$ is well-defined.
(a) Give an explicit necessary and sufficient condition for a function $f \in \mathcal{F}_{p}$ to represent the 0 -germ, the equivalence class of the constant function 0 . Do the same for the equivalence class of a general constant function (a constant germ).
(b) Show that the usual operations of addition of functions and multiplication by scalars induce well-defined operations on germs, and therefore that \mathcal{G}_{p} is a vector space, whose zero element is the 0 -germ, under these operations.
(c) Show that multiplication of functions induces a well-defined operation on germs. (We still call this operation multiplication, and denote it the same way we do mulitiplication of functions.)

Definition. A linear functional $L: \mathcal{G}_{p} \rightarrow \mathbf{R}$ is called Leibnizian (or Leibniz-linear) if for all $\hat{f}, \hat{g} \in \mathcal{G}_{p}$ we have $L(\hat{f} \hat{g})=L(\hat{f}) \hat{g}(p)+\hat{f}(p) L(\hat{g})$. ("Functional" is another word for real-valued function that is often used when the domain is some infinite-dimensional object.)
(d) Show that if $L: \mathcal{G}_{p} \rightarrow \mathbf{R}$ is Leibnizian then L (any constant germ) $=0$.

Let $\mathcal{L}_{p}=\left\{\right.$ Leibnizian functionals $\left.\mathcal{G}_{p} \rightarrow \mathbf{R}\right\}$.
(e) Show that \mathcal{L}_{p} is a vector space (with the obvious operations and zero element).
(f) Show that \mathcal{L}_{p} is naturally isomorphic to $T_{p}\left(\mathbf{R}^{3}\right)$. (Hint: Taylor's Theorem [not Taylor series]. You have to know the right version of Taylor's Theorem for this hint to be useful; the one most commonly taught in modern Calculus 1-2-3 courses, while pretty, is useless for many purposes, including this one.)

