MTG 6256, Fall 2004: Non-book Problem 2 corrected 9/18/04

Recall that an open half-plane in \mathbf{R}^{2} is a set of the form $\left\{w \in \mathbf{R}^{2} \mid(w-p) \cdot v>0\right\}$ where $p, v \in \mathbf{R}^{2}$ and $v \neq 0$. Any line ℓ in \mathbf{R}^{2} divides $\mathbf{R}^{2}-\ell$, the complement of the line, into two open half-planes.
(a) Let ℓ be a line in \mathbf{R}^{2}. (i) Show that, for any point $p \in \ell$ and any $v \in T_{p} \mathbf{R}^{2}$ not tangent to ℓ, the half-planes into which ℓ divides $\mathbf{R}^{2}-\ell$ are $\left\{w \in \mathbf{R}^{2} \mid(w-p) \cdot \pi(v)>0\right\}$ and $\left\{w \in \mathbf{R}^{2} \mid(w-p) \cdot \pi(v)<0\right\}$, where $w-p$ is viewed as an element of $T_{p} \mathbf{R}^{2}$ and where π is the orthogonal projection from $T_{p} \mathbf{R}^{2}$ onto the subspace normal to ℓ at p. (A vector u is normal to ℓ at p if it is orthogonal to some, hence every, nonzero vector tangent to ℓ at p.) (ii) Show that the half-line parametrized by $t \mapsto \gamma(t):=p+t v, t>0$, lies in the first of these two half-planes. Thus we define the half-plane into which v points to be this half-plane.
(b) Let $\beta: I \rightarrow \mathbf{R}^{2}$ be a smooth unit-speed curve, let $s_{0} \in I$, and let ℓ be the line tangent to the image of β at $\beta\left(s_{0}\right)$. Show that if $\kappa\left(s_{0}\right)>0$, then for ϵ sufficiently small, if $0<\left|s-s_{0}\right|<\epsilon$ then $\beta(s)$ lies in the half-plane into which the principal unit normal $N\left(s_{0}\right)$ points.

The real point of this exercise is that it gives a parametrization-independent characterization of which of the two unit vectors normal to a regular plane curve at a given point p is the principal unit normal: it's the one pointing into the half-plane in which the curve lies near p.

