MTG 6256, Fall 2004: Non-book Problem 4

Throughout this problem, O is an open subset of \mathbf{R}^{3}.
(a) Let $\left\{\theta^{i}\right\}_{i=1}^{3}$ be a (generalized) co-frame field on an open subset O, i.e. a triple of 1-forms on O that at each $p \in O$ form a basis of the cotangent space $T_{p}^{*} \mathbf{R}^{3}$. As in class, write

$$
\theta:=\left(\begin{array}{c}
\theta^{1} \\
\theta^{2} \\
\theta^{3}
\end{array}\right), \quad d x:=\left(\begin{array}{c}
d x^{1} \\
d x^{2} \\
d x^{3}
\end{array}\right)
$$

Let $\left\{E_{i}\right\}_{i=1}^{3}$ be the (not necessarily orthonormal) frame-field dual to $\left\{\theta^{i}\right\}_{i=1^{3}}$ (i.e. for which $\left.\left\langle\theta^{i}, E_{j}\right\rangle=\delta^{i}{ }_{j}\right)$, and define $E=\left(E_{1}, E_{2}, E_{3}\right)$. Similarly define $U=\left(U_{1}, U_{2}, U_{3}\right)$, where $\left\{U_{i}\right\}$ is the standard frame-field on \mathbf{R}^{3} (restricted to O). Show that if B is the matrix-valued function for which $\theta=B d x$, then $E=U B^{-1}$.

Let $\left\{y^{i}\right\}_{i=1}^{3}$ be a coordinate-system on O. By this we mean a set of three functions y^{i} : $O \rightarrow \mathbf{R}$ for which the Jacobian $\left(\partial y^{i} / \partial x^{j}\right)$ is invertible at every point of O (here $\left\{x^{i}\right\}$ are the standard coordinates on \mathbf{R}^{3}, restricted to O), and for which the map $O \rightarrow \mathbf{R}^{3}$ given by $p \mapsto\left(y^{1}(p), y^{2}(p), y^{3}(p)\right)$ is one-to-one (so that each point of O has a unique triple of y coordinates).
(b) Show at each point $p \in O$, the $\left\{\left.d y^{i}\right|_{p}\right\}$ are linearly independent, and hence that the $\left\{d y^{i}\right\}$ form a co-frame field on O.
(c) In class we discussed why, given a coordinate-system $\left\{y^{i}\right\}$, it is reasonable to label the elements of the (generally non-orthonormal) frame-field dual to the co-frame field $\left\{d y^{i}\right\}$ as $\left\{\partial / \partial y^{i}\right\}$. Apply part (a) to give an expression for $d y$ and for $\left(\frac{\partial}{\partial y^{1}}, \frac{\partial}{\partial y^{2}}, \frac{\partial}{\partial y^{3}}\right)$ in terms of the Jacobian $\left(\partial y^{i} / \partial x^{j}\right)$ and the standard objects $d x,\left(\frac{\partial}{\partial x^{1}}, \frac{\partial}{\partial x^{2}}, \frac{\partial}{\partial x^{3}}\right)$. Your answer (if correct) provides further justification for the partial-derivative notation for coordinate-system frame fields.
(d) The objects $\left\{d y^{i}\right\}$ and $\left\{\partial / \partial y^{i}\right\}$ discussed above are not quite on the same footing. For any function f on O, the 1 -form $d f$ is defined. Thus if $\left\{y^{i}\right\}$ are coordinates on O, each $d y^{i}$ is an object whose definition, and whose action on functions, is completely independent of the other $d y^{j}$; changing y^{2} and y^{3} into different functions will not affect y^{1}, and we do not even need y^{2} and y^{3} to be defined in order to define $d y^{1}$. By contrast, $\left\{\partial / \partial y^{1}\right\}$ (or any of the three $\partial / \partial y^{i}$) becomes well-defined only once the entire triple of coordinate-functions $\left\{y^{i}\right\}_{i=1}$ has been defined; given a single function f, there is no unambiguous meaning to " $\partial / \partial f$ ". The same is true if the dimension " 3 " is replaced by any $n \geq 2$. Check this with the following twodimensional example. Let (x, y) be the usual coordinates on \mathbf{R}^{2} and define $u=x, v=x+y$. Define $g(x, y)=x+y$. [CONTINUED ON NEXT PAGE.]

1. Show that $\{u, v\}$ is a coordinate-system on \mathbf{R}^{2}.
2. Show that $\frac{\partial}{\partial x}[g]=1$ (identically), but $\frac{\partial}{\partial u}[g]=0$ (identically), even though $u: \mathbf{R}^{2} \rightarrow \mathbf{R}$ and $x: \mathbf{R}^{2} \rightarrow \mathbf{R}$ are the same function. (Here $\frac{\partial}{\partial x}$ means the first vector field in the coordinate frame-field $\left\{\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right\}, \frac{\partial}{\partial u}$ means the first vector field in the coordinate framefield $\left\{\frac{\partial}{\partial u}, \frac{\partial}{\partial v}\right\}$, and $V[g]$ denotes the usual action of a vector field V on a function f.)
