(a) Complete the example started in class: for the spherical-coordinate orthonormal frame field $\left\{E_{i}\right\}$ constructed in class, express the dual 1-forms in terms of $d \rho, d \theta$, and $d \phi$.
(b) Using part (a) and non-book problem 4, express the $\left\{E_{i}\right\}$ in terms of the (nonorthonormal) frame-field $\left\{\frac{\partial}{\partial \rho}, \frac{\partial}{\partial \theta}, \frac{\partial}{\partial \phi}\right\}$.
(c) Compute the connection forms for the frame-field $\left\{E_{i}\right\}$. This is O'Neill's problem 2.7/4, but remember that O'Neill's ϕ is $\{\pi / 2-(\mathrm{my} \phi)\}$, so your answers will look a little different from those in the book (but should agree up to this change-of-variable))
(d) Compute all nine covariant derivatives $\nabla_{E_{i}} E_{j}$. Explain why this part of the problem is made much easier by your having done part (c) first.

