
MTG 6256, Fall 2004: Non-book Problem 6

Below, M is a surface in R3.

(a) Let F : R3 → R3 be a diffeomorphism and let N = F (M). Prove that N is a surface.

(b) Let F,N be as in (a) and let Z be a vector field along M (not necessarily tangent or normal).
Show that the formula

(F∗Z)p := F∗F−1(p)(ZF−1(p)), p ∈ N (1)

determines a well-defined vector field F∗Z on N (tangent to N if Z is tangent to M). Note: by
the convention we are using “vector field” means smooth vector field. Therefore smoothness is
something you are to assume about Z, but have to prove about F∗Z. (This problem is being
assigned partly because of what I am seeing on your midterms. (i) Under a general smooth map,
tangent vectors push forward, but general vector fields do not, unless the map is one-to-one—
you should be able to see from the formula above why there is no good definition of (F∗Z)p if p
has more than one inverse image, unless the vector field Z is very special. The situation is very
similar to the one I commented on in the homework assignment posted 10/20/04. (ii) While
the principle is generally true that smooth operations applied to smooth gadgets yield smooth
gadgets, it is something that needs to be proven each time you invent a new gadget. At this
stage of your learning of differential geometry, you should not be asserting that the object F∗Z
defined above is “obviously” smooth. Only once you have had enough experience with the way
to prove that F∗Z is smooth do you have a right to assert that it’s obvious, or to completely
ignore the issue.)

(c) Let F : R3 → R3 be an isometry and again let N = F (M); since all isometries of R3 are
diffeomeorphisms, the results of parts (a) and (b) apply. Show that for any tangent vector field
X on M and any (not necessarily tangent) vector field Z along M we have

F∗(∇XZ) = ∇F∗(X)(F∗(Z)). (2)

(d) Hypotheses and notation as in (c). Show that if U is a unit normal vector field along M ,
then F∗U is a unit normal vector field along N .

(e) Hypotheses and notation as in (c). Assume that M is oriented, let U be the corresponding
unit normal vector field along M , and let Ū = F∗U . Let S and h be, respectively, the shape
operator and second fundamental form associated with the given orientation of M , and let S̄
and h̄ be the shape operator and second fundamental form associated with the orientation of
N determined by Ū . Show that for all tangent vector fields X, Y on M , we have

S̄(F∗X) = F∗(S(X)) (3)

and

(h̄(F∗X,F∗Y )) ◦ F = h(X,Y ). (4)
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(Note that the assertion that (4) holds for all X, Y is identical to the assertion “F ∗h̄ = h”).
Equation (4) justifies the assertion made in class that if we translate a surface M so that

a given point p gets taken to the origin, then rotate that translated surface to obtain a surface
N whose tangent plane at the origin is the xy plane, then the relation between the second
fundamental form hp and the geometry of M near p is the same as the relation between the
second fundamental form h̄0 and the geometry of N near 0. Thus the second fundamental form
always gives the quadratic approximation to a function f : (O ⊂ TpM)→ (TpM)⊥ whose graph
is the corresponding open neighborhood of p in M .

(f) Hypotheses and notation as in (e). Let K, K̄ be the Gaussian curvature functions of M,N
respectively, and let H, H̄ be the mean curvature functions determined by the choices U, Ū of
unit normals. Similarly let k1, k2, k̄1, k̄2 be the principal-curvature functions defined by taking
k1(p) to be the larger of the two principal curvatures at each p ∈ M and k2 to be the smaller,
etc. for k̄1, k̄2. Show that K̄ ◦ F = K and H̄ ◦ F = H, and that k̄i ◦ F = ki for i = 1, 2 (of
course the first two equalities follow from the last, but you can prove the first two without ever
mentioning principal curvatures). Prove also that F∗ carries principal directions to principal
directions.

The preceding shows that Gaussian, mean, and principal curvatures and principal direc-
tions are geometric invariants in the sense of being objects that are preserved by isometries of
R3.
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