
Differential Geometry—MTG 6256—Fall 2010
Point-Set Topology: Glossary and Review

Organization of this glossary. Several general areas are covered: sets and
functions, topological spaces, metric spaces (very special topological spaces), and
normed vector spaces (very special metric spaces). In order to proceed from concrete
objects to more general objects, topological spaces appear last. Because of this, sev-
eral definitions appear both for metric spaces and for topological spaces even though
the second definition implies the first. However, to limit the length of these notes
certain properties relevant to metric spaces have had their definitions deferred to the
topological-space section.

In the section on normed vector spaces, material on the operator norm is included,
although strictly speaking it’s not part of point-set topology.

Set and Function Terminology

image; inverse image. Let A and B be sets and f : A→ B a function. If U ⊂ A,
then the image of U under f , denoted f(U), is defined by f(U) = {b ∈ B | b =
f(u) for some u ∈ U}. If V ⊂ B, then the inverse image (or pre-image) of V under
f , denoted f−1(V ), is defined by f−1(V ) = {a ∈ A | f(a) ∈ V }. The inverse image
of a set is always defined, regardless of whether an inverse function exists.

One always has f(f−1(V )) = V and f−1(f(U)) ⊃ U , but in general f−1(f(U)) 6=
U . One also has f−1(U

⋃
V ) = f−1(U)

⋃
f−1(V ), f−1(U ∩ V ) = f−1(U) ∩ f−1(V ),

and f(U
⋃
V ) = f(U)

⋃
f(V ). However, while f(U ∩ V ) ⊂ f(U) ∩ f(V ), in general

f(U ∩ V ) 6= f(U) ∩ f(V ).

complement. If A is a set and B ⊂ A, the complement of B in A, denoted A − B
or B′ in these notes, consists of all elements of A not in B.

disjoint. Two sets U, V are disjoint if they have no elements in common (U ∩V = ∅).

disjoint union. The disjoint union U
∐
V is the union of two disjoint sets U, V ; the

notation U
∐
V simply means U ∪ V together with an assertion (or reminder) that

U and V are disjoint. The disjoint union of any collection of (disjoint) sets is defined
and denoted similarly.

equivalence relation. An equivalence relation on a set A is a relation ∼ that is
reflexive (a ∼ a ∀a ∈ A), symmetric (a ∼ b implies b ∼ a), and transitive (a ∼ b
and b ∼ c implies a ∼ c). The equivalence class of an element a ∈ A is the set of all
elements b such that a ∼ b. An equivalence relation on A partitions A into a disjoint
union of equivalence classes.
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Metric Space Notions

metric. A metric on a set X is a function d : X ×X → R satisfying the following
three conditions:

(i) symmetry: d(x, y) = d(y, x) ∀x, y ∈ X
(ii) triangle inequality: d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z ∈ X.
(iii) positivity: d(x, y) ≥ 0 ∀x, y,∈ X, and d(x, y) = 0 iff x = y.

metric space. A metric space is a pair (X, d), where X is a nonempty set and d is a
metric on X. Examples: (i) X = Rn with d(x,y) = ‖x−y‖, where ‖x‖ = (

∑
i(x

i)2)1/2

and where x = (x1, . . . , xn). This is called the standard metric or Euclidean metric
on Rn. In these notes, whenever Rn or a subset of Rn is referred to as a metric
space, the standard metric is intended unless otherwise specified. (ii) Any nonempty
subset of Rn with d inherited from Rn (e.g. the unit sphere {x ∈ R3 | ‖x‖ = 1},
with d(x,y) equal to the length of the line segment in R3 joining x and y). (iii) Any
nonempty subset Y of a metric space (X, d), with d inherited from X. In this case d
(restricted to Y ) is called the induced metric on Y .

Note that a metric space need not have any linear structure; it general there is no
such thing as the sum of two points in a metric space. Metric spaces are more general
than the normed vector spaces considered below.

Common notational simplification. In statements for which the function d does
not need to be referenced explicitly, one often refers simply to X as a metric space,
rather than writing (X, d). This convention will be used below.

convergence; limit of a sequence. A sequence {xn} of points in a metric space
(X, d) converges if there exists y ∈ X for which limn→∞ d(xn, y) = 0. In this case
we say that {xn} converges to y (also written xn → y) and that y is the limit of the
sequence {xn}. Examples. (i) X = R, d(x, y) = |x − y|, xn = 1/n. This sequence
converges to 0. (ii) Same as (i), except with X = R−{0} (the “punctured” line). In
this case {xn} does not converge. (We don’t say that {xn} converges to a point not
in X.)

continuous function. If X is a metric space, f : X → R is a function, and x ∈ X,
we say f is continuous at x if for every sequence {xn} in X with limit y, we have
limn→∞ f(xn) = f(x). If f is continuous at each point, we simply say that f is
continuous.

More generally, the same definition of continuity applies to functions from X to
any other metric space.

Cauchy sequence. A Cauchy sequence in a metric space (X, d) is a sequence of
points {xn} in X with the following property: ∀ε > 0 ∃N such that ∀n,m ≥ N ,
d(xn, xm) < ε.

Fact. “Cauchy” is a necessary condition for a sequence in a metric space to
converge. However, example (ii) under “convergence; limit of a sequence” shows that
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this condition is not sufficient to ensure convergence.

dense subset. A subset U of a metric space d is dense if for all x ∈ X there exists
a sequence {un} in U with un → x.

complete. A metric space (X, d) is complete if every Cauchy sequence converges. A
subset Y ⊂ X is called complete if the metric space (Y, d) is complete (in other words,
if Y is complete with respect to the induced metric). Examples. (i) Rn is complete.
(ii) Rn − {0} is not complete. (iii) The disk {(x, y) ∈ R2 | x2 + y2 ≤ 1} is complete.
(iv) The disk {(x, y) ∈ R2 | x2 + y2 < 1} (strict inequality this time) is not complete.

open and closed balls; disks. Let (X, d) be a metric space, p ∈ X, r > 0. The
open ball of radius r centered at p is the set Br(p) := {x ∈ X | d(x, p) < r}.
The closed ball of radius r centered at p is the set Br(p) := {x ∈ X | d(x, p) ≤ r}.
Disk is a synonym for ball.

open and closed sets. A subset U of a metric space is called open if ∀p ∈ U ∃r > 0
such that Br(p) ⊂ U . A subset U is called closed if its complement is open. Examples:
(1) Open balls are open sets. (2) Closed balls are closed sets. (3) The set obtained
by deleting one point from the boundary of closed ball in Rn (n > 0) is neither open
nor closed.

In general, most sets are neither open nor closed.

relation of “closed” to “complete”. Facts. (1) Every complete subset of a metric
space is closed. (2) Every closed subset of a complete metric space is complete.

Thus, in a complete metric space, closed subsets and complete subsets are the
same.

bounded set. A subset U of a metric space is bounded if U is contained in a ball
Br(p) for some r, p.

equivalent metrics. Two metrics d, d′ on the same set X are equivalent if there
exist c1 > 0, c2 > 0 such that c1d(x, y) ≤ d′(x, y) ≤ c2d(x, y) ∀x, y ∈ X.

Fact. Equivalent metrics determine the same open sets and the same Cauchy
sequences. (Easy to show.)

Normed Vector Spaces

Below, all vector spaces are assumed real, but everything generalizes to the complex
case.

norm. A norm ‖ ‖ on a vector space V is a real-valued function on V satisfying the
following three conditions:

(i) homogeneity: ‖cv‖ = |c|‖v‖ ∀v ∈ V, c ∈ R.
(ii) triangle inequality: ‖v + w‖ ≤ ‖v‖+ ‖w‖ ∀v, w ∈ V .
(iii) positivity: ‖v‖ ≥ 0 ∀x, y,∈ X, and ‖v‖ = 0 iff v = 0.
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Examples. (1) Let p ≥ 1. The p-norm ‖ ‖p on Rn is defined by ‖x‖p = (
∑
i |xi|p)1/p.

Homogeneity and positivity are obvious; the triangle inequality also holds (but would
fail for p < 1) but is harder to prove. (2) The sup-norm ‖ ‖∞ on Rn is defined by
‖x‖∞ = max1≤i≤n |xi|.

normed vector space. A normed vector space is a pair (V, ‖ ‖), where V is a vector
space and ‖ ‖ is a norm on V .

Common notational simplification. In statements for which the norm ‖ ‖ does not
need to be referenced explicitly, one often says simply “Let V be a normed vector
space” rather than “Let (V, ‖ ‖) be a normed vector space.”

Normed vector spaces as metric spaces. Let (V, ‖ ‖) be normed vector space. The
norm induces a metric d : V × V → R defined by d(x, y) = ‖x − y‖. Whenever
metric-space properties are referred to on a normed vector space, it is implicit that
the metric is the one induced by the norm unless otherwise stated (this is a universal
convention, not just a convention for these notes).

equivalent norms. Two norms ‖ ‖, ‖ ‖′ on a vector space V are called equivalent if
there exist c1 > 0, c2 > 0 such that c1‖x‖ ≤ ‖x‖′ ≤ c2‖x‖.

Facts. (1) If two norms on V are equivalent, then so are their induced metrics.
(2) All norms on Rn are equivalent. In infinite-dimensional vector spaces, this is

very far from true.

boundedness and continuity of linear maps. Let V,W be normed vector spaces.
A linear map T : V → W is bounded if there exists c such that ‖T (x)‖W ≤ c‖x‖V ∀x ∈
V .

Fact. A linear map between normed vector spaces is continuous iff it is bounded.

operator norm. Let V,W be normed vector spaces and T : V → W a bounded
linear map. The operator norm of T , induced by the norms on V and W , is defined
by ‖T‖ := sup‖x‖=1 ‖T (x)‖.

Facts. (1) A linear map is bounded iff its operator norm is finite. The operator
norm is simply the infimum of the constants c that work for T in the definition of
“bounded” above. (Easy to show.)

(2) The operator norm has the following multiplicative property: if T, S are
bounded linear maps between normed vector spaces for which the composition T ◦ S
is defined, then ‖T ◦ S‖ ≤ ‖T‖‖S‖. (Easy to show.)

Banach space. A Banach space is a complete normed vector space. Examples. (1)
Rn with any norm. (2) Any Hilbert space. (3) Homc(V,W ), the space of bounded
linear maps from a Banach space V to a Banach space W , with the operator norm.
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Topological Spaces

topology; open sets. A topology on a set X is any collection U of subsets of X, to
be called open sets for that topology, with the following restrictions:

(i) ∅ ∈ U and X ∈ U (the empty set and the whole set are open).
(ii) If U1, U2, . . . , Un ∈ U then U1∩U2∩ . . .∩Un ∈ U (the intersection of any finite

collection of open sets is open)
(iii) If Uα ∈ U for all α in some index set A (finite or infinite), then

⋃
α∈A Uα ∈ U

(the union of any collection of open sets is open)

topological space. A topological space is a pair (X,U), where X is a set and U is
a topology on X. When U is understood from context, we usually just say “X is a
topological space.” Example. Any metric space.

A topological space (X,U) is called metrizable if there exists a metric on X whose
collection of open sets is precisely U .

Notation for below. X denotes a topological space with topology U .

relative (or induced) topology. If Y ⊂ X, we define the relative topology or
induced topology on Y by declaring a subset V ⊂ Y to be open iff V = Y

⋂
U for

some open set U ⊂ X. This makes Y a topological space in its own right.

quotient topology. Let X be a topological space, let ∼ be an equivalence relation
on X, and let Z be the set of equivalence classes determined by ∼. Let π : X → Z
be the map that sends an element to its equivalence class. Declare U ⊂ Z open iff
π−1(Z) is open in X. It is easy to check that this defines a topology on Z, called the
quotient topology.

closed set. A subset of X is called closed if its complement is open. It follows from
the definition of “open” that X is closed, ∅ is closed, any finite union of closed sets
is closed, and any intersection (finite or infinite) of closed sets is closed.

open neighborhood; punctured open neighborhood. An open neighborhood of
a point p ∈ X is an open set containing p. A punctured open neighborhood of p is a
set U − {p}, where U is an open neighborhood of p.

Hausdorff. X is Hausdorff if for all distinct points p, q ∈ X there are neighborhoods
U, V of p, q respectively, with U

⋂
V = ∅. Example: Any metric space. Non-example.

The “line with two origins”, L, defined as follows. Start with the set X = R ×
{horse, dog}, topologized as two disjoint copies of R. Define an equivalence relation
on X by declaring (x, horse) ∼ (y, dog) if and only if x = y 6= 0. Define L to be
the quotient space of this equivalence relation; i.e. the set of equivalence classes,
endowed with the quotient topology. Then every open neighborhood of (0, horse
intersects every open neighborhood of (0, dog), so L is not Hausdorff.

convergence; limit of a sequence. A sequence {xn} in X converges to p ∈ X,
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written xn → p, if for every open neighborhood U of x, ∃ N such that xn ∈ U for all
n > N . In this case we also say limn→∞ xn = p provided that X is Hausdorff. (If X
is not Hausdorff a sequence can converge to more than one point.)

continuous function. A function f : X → Y , where X and Y are topological
spaces, is called continuous at p if for every open neighborhood U of f(p), the inverse
image f−1(U) is open in X. If X and Y are metric spaces this reduces to the usual
ε-δ definition.

Continuity and limits of sequences. Under “Metric Spaces” above, continuity was
defined in terms of limits of sequences. For metric spaces, this definition is equivalent
to the preceding one, but in general this is false. More specifically: (1) For any
topological spaces X,Y , if f : X → Y as above is continuous and xn → x in X, then
f(xn) → f(x) in Y . (2) If X is a metric space and Y is any topological space, then
f is continuous at x ⇐⇒ whenever xn → x in X we have f(xn)→ f(x) in Y .

homeomorphism. A homeomorphism between topological spaces is a continuous
map with a continuous inverse. Two spaces are homeomorphic if there exists a home-
omorphism between them.

accumulation point; cluster point. An accumulation point or cluster point of a
sequence {xn} in X is a point p ∈ X for which every open neighborhood of of p is
visited infinitely often by the sequence (i.e. for every open neighborhood U of p, there
exist infinitely many n for which xn ∈ U). Equivalently, p is an accumulation point
of {xn} if there exists a subsequence of {xn} converging to p. Example. X = R,
xn = (−1)n(1− 1/n). The sequence clusters at both ±1.

The terms accumulation point and cluster point are also applied to subsets of X.
If U ⊂ X and p ∈ X, then p is a cluster point (or accumulation point) of U if every
punctured open neighborhood of p contains a point of U . This definition applies
whether or not p ∈ U . Example. If U is the open unit disk in R2, then every point
in the closed unit disk is an accumulation point of U .

closure of a subset. The closure U of a subset U ⊂ X is the union of U and all its
accumulation points. Example: The closure of the open unit disk in R2 is the closed
unit disk.

Facts. (1) U is always closed. (2) U is the intersection of all closed subsets of X
that contain U (this is often taken to be the definition of U), and in this sense is the
smallest closed set containing U . (3) U is closed iff U = U .

interior points; interior of a subset. A point p in a subset U ⊂ X is an interior
point of U if there exists an open nbhd V of p entirely contained in U . Int(U), the
interior of U , is the set of all interior points of U .

Facts. (1) Int(U) is always open. (2) Int(U) is the union of all open subsets of X
contained in U (this is often the definition of Int(U)), and in this sense is the largest
open set contained in U . (3) U is open iff Int(U)=U .
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boundary points; boundary of a subset. A point p ∈ X is a boundary point of
U ⊂ X if every open neighborhood of p contains both a point of U and a point of the
complement U ′ (= X−U). The boundary of U, written ∂U, is the set of all boundary
points of U .

Facts. (1) ∂U = U
⋂
U ′. This is often taken as the definition of ∂U .

(2) U = Int(U)
∐
∂U.

dense subset. A subset U of X is dense if U = X (equivalently if ∀p ∈ X, every
neighborhood V of p contains a point of U).

topological-space terms applied to subsets. For simplicity, the definitions of
topological properties below (compactness, sequential compactness, connectedness,
arcwise connectedness) are given for whole topological spaces, but the terms are also
used for subsets of topological spaces. A subset of U ⊂ X is said to have one of these
properties if, with the relative topology (induced from X), the topological space U
has that property. Thus we can talk about compact subsets, connected subsets, etc.

sequential compactness. X is sequentially compact if every infinite sequence has a
convergent subsequence (equivalently, if every infinite sequence has an accumulation
point). Example. The closed unit disk in R2 is sequentially compact; the open unit
disk is not.

open covers; finite covers; subcovers. A cover of X is a collection of sub-
sets V whose union is X. V is an open cover if each V ∈ V is an open set in X.
The cover is finite if V consists of only finitely many elements (here elements of V
are the relevant subsets of X, not elements of X.) Example. The set of intervals
{(0, 1), (1/4, 5/2), (1/2, 3/2), (1, 2)} is a finite open cover of the interval (0, 2).

A subcover of V is a cover each of whose elements is an element of V . In the
example above, {(0, 1), (1/2, 3/2), (1, 2)} is a subcover. Subcovers need not be finite.

compactness. X is compact if every cover of X has a finite subcover.

useful facts about compactness and sequential compactness. (1) A metric
space is compact iff it is sequentially compact. (2) Heine-Borel Theorem: A subset
U ⊂ Rn is compact iff it is closed and bounded.

In metric spaces, why bother with the initially mysterious concept compactness
when it’s equivalent to the more tangible sequential compactness? One reason is that
many proofs are easier using compactness. Also, one often wants to deal with non-
metric topological spaces (even if they are metrizable, one may not wish to specify a
metric on them).

Sample proof using compactness. Proposition. If f : X → Y is a continuous
map from one topological space to another, and X is compact, then the image f(X)
is compact. (“The continuous image of a compact set is compact.”) Proof. Let V be
an open cover of f(X). For each V ∈ V , the set f−1(V ) is open since f is continuous,
and the collection W = {f−1(V )}V ∈V covers X. Since X is compact, W has a finite
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subcover, say W1, . . . ,Wn, where Wi = f−1(Vi). Then {f(Wi)} covers f(X). But
f(Wi) = Vi, so {V1, . . . Vn} is a finite subcover of V .

arcwise (or path-) connectedness; path component. X is called arcwise con-
nected or path-connected if every pair of points in X can be joined by a curve (also
called an arc or a path). More precisely, X is arcwise connected if for all p, q ∈ X,
there exists a continuous map γ : [0, 1] → X with γ(0) = p and γ(1) = q. The path
component of p ∈ X consists of all points q ∈ X that can joined to p by some path.

connectedness; connected components. X is connected if it cannot be expressed
as the disjoint union of two nonempty open subsets. Example. A subset Y of R2

consisting of two disjoint closed disks is not connected. (Remember that when a
topological term is used in the context of subsets, the relative topology is implied.
In this example, each of the two closed disks is open in the relative topology on Y ,
even though not open in X. Thus Y can be expressed as the disjoint union of two
nonempty sets each of which is Y -open, though not X-open.)

Note that if X = A
∐
B then each set is the complement of the other, and hence if

A and B are both open, they are also both closed. Therefore an equivalent definition
of “connected” is: X is connected if the only subsets that are both open and closed
are X and ∅.

A nonempty subset of X that is both open and closed is called a connected com-
ponent (or just component) of X.

Facts. (1) Arcwise connectedness implies connectedness, but the converse is false.
(2) An open subset of Rn is connected iff it is arcwise connected. (In fact in the
connected case, any two points can be joined not only by a continuous path, but by
a smooth path.) This fact extends to manifolds.

Sample proof using connectedness. Generalized Intermediate Value-Theorem.
If f : X → Y is a continuous map from one topological space to another, and X is con-
nected, then the image f(X) is connected. (“The continuous image of a connected set
is connected.”) Proof. Assume f(X) is not connected and let A,B be two (relatively)
open nonempty subsets of f(X) with f(X) = A

∐
B. Then f−1(A) and f−1(B) are

open (since f is continuous), nonempty, disjoint, and f−1(A)
∐
f−1(B) = X. Hence

X is not connected, a contradiction. Therefore f(X) is connected.
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