Context and notation as in 10/11/17 lecture.
Let $\left(U_{\alpha}, \varphi_{\alpha}\right),\left(U_{\beta}, \varphi_{\beta}\right)$ be two charts of M containing p. Let $p_{\alpha}=\varphi_{\alpha}(p), p_{\beta}=$ $\varphi_{\beta}(p)$. Recall that, for each $q \in \mathbf{R}^{n}$, we have already defined a vector-space structure on $T_{q} \mathbf{R}^{n}$ and a canonical isomorphism $\iota_{q}: T_{q} \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ given by $[\bar{\gamma}] \mapsto \gamma^{\prime}(0)$. Below, we use the abbreviations $\iota_{\alpha}:=\iota_{p_{\alpha}}, \iota_{\beta}:=\iota_{p_{\beta}}$.

We have defined a bijective map $\varphi_{\alpha * p}: T_{p} M \rightarrow T_{p_{\alpha}} \mathbf{R}^{n},[\gamma] \mapsto\left[\varphi_{\alpha} \circ \gamma\right]$, etc. for β. We have also observed that $\left(\varphi_{\alpha * p}\right)^{-1}$ is the map $[\bar{\gamma}] \mapsto\left[\varphi_{\alpha}^{-1} \circ \bar{\gamma}\right]$.

Claim: The map $h_{\beta \alpha}:=\varphi_{\beta * p} \circ\left(\varphi_{\alpha * p}\right)^{-1}: T_{p_{\alpha}} \mathbf{R}^{n} \rightarrow T_{p_{\beta}} \mathbf{R}^{n}$ is linear.
Proof: Let $J=J_{\varphi_{\beta} \circ \varphi_{\alpha}^{-1}}\left(\varphi_{\alpha}(p)\right)$, and let $g_{\beta \alpha}: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$ be the linear map $v \mapsto J v$. For every curve $\bar{\gamma}$ based at p_{α}, we have

$$
h_{\beta \alpha}([\bar{\gamma}])=\varphi_{\beta * p}\left(\left(\varphi_{\alpha * p}\right)^{-1}([\bar{\gamma}])\right)=\varphi_{\beta * p}\left(\left[\varphi_{\alpha}^{-1} \circ \bar{\gamma}\right]\right)=\left[\varphi_{\beta} \circ \varphi_{\alpha}^{-1} \circ \bar{\gamma}\right],
$$

and thus

$$
\iota_{\beta}\left(h_{\beta \alpha}([\bar{\gamma}])\right)=\left(\varphi_{\beta} \circ \varphi_{\alpha}^{-1} \circ \bar{\gamma}\right)^{\prime}(0)=J \bar{\gamma}^{\prime}(0)=J \iota_{\alpha}[\bar{\gamma}] .
$$

Hence $\iota_{\beta} \circ h_{\beta \alpha}=g_{\beta \alpha} \circ \iota_{\alpha}$, so $h_{\beta \alpha}=\iota_{\beta}^{-1} \circ g_{\beta \alpha} \circ \iota_{\alpha}$, a composition of three linear maps.

Using the vector-space operations we've previously defined on tangent spaces of \mathbf{R}^{n}, we define vector-space operations on $T_{p} M$ induced by the chart $\left(U_{\alpha}, \varphi_{\alpha}\right)$ by setting

$$
v+_{\alpha} w=\left(\varphi_{\alpha * p}\right)^{-1}\left(\varphi_{\alpha * p} v+\varphi_{\alpha * p} w\right), \quad c \cdot{ }_{\alpha} v=\left(\varphi_{\alpha * p}\right)^{-1}\left(c \varphi_{\alpha * p} v\right) .
$$

for all $v, w \in T_{p} M$ and $c \in \mathbf{R}$. We define vector-space operations on $T_{p} M$ induced by the chart $\left(U_{\beta}, \varphi_{\beta}\right)$ analogously. Using the linearity of $h_{\beta \alpha}$ shown above, we have

$$
\begin{aligned}
v+_{\alpha} w & =\left(\varphi_{\beta * p}\right)^{-1} \circ \varphi_{\beta * p} \circ\left(\varphi_{\alpha * p}\right)^{-1}\left(\varphi_{\alpha * p} v+\varphi_{\alpha * p} w\right) \\
& =\left(\left(\varphi_{\beta * p}\right)^{-1} \circ h_{\beta \alpha}\right)\left(\varphi_{\alpha * p} v+\varphi_{\alpha * p} w\right) \\
& =\left(\varphi_{\beta * p}\right)^{-1}\left(h_{\beta \alpha}\left(\varphi_{\alpha * p} v\right)+h_{\beta_{\alpha}}\left(\varphi_{\alpha * p} w\right)\right) \\
& =\left(\varphi_{\beta * p}\right)^{-1}\left(\varphi_{\beta * p} v+\varphi_{\beta * p} w\right) \\
& =v+_{\beta} w .
\end{aligned}
$$

Similarly, $c \cdot{ }_{\alpha} \quad v=c \cdot{ }_{\beta} \quad v$.
Hence the vector-space structures on $T_{p} M$ induced by any two charts are the same. Thus $T_{p} M$ has a canonical vector-space structure, the one induced by any chart containing p.

