Vector-space structure on T_pM (notes for portion of 10/11/17 lecture)

Context and notation as in 10/11/17 lecture.

Let $(U_{\alpha}, \varphi_{\alpha}), (U_{\beta}, \varphi_{\beta})$ be two charts of M containing p. Let $p_{\alpha} = \varphi_{\alpha}(p), p_{\beta} = \varphi_{\beta}(p)$. Recall that, for each $q \in \mathbf{R}^n$, we have already defined a vector-space structure on $T_q \mathbf{R}^n$ and a canonical isomorphism $\iota_q : T_q \mathbf{R}^n \to \mathbf{R}^n$ given by $[\bar{\gamma}] \mapsto \gamma'(0)$. Below, we use the abbreviations $\iota_{\alpha} := \iota_{p_{\alpha}}, \iota_{\beta} := \iota_{p_{\beta}}$.

We have defined a bijective map $\varphi_{\alpha*p}: T_pM \to T_{p\alpha}\mathbf{R}^n, [\gamma] \mapsto [\varphi_{\alpha} \circ \gamma]$, etc. for β . We have also observed that $(\varphi_{\alpha*p})^{-1}$ is the map $[\bar{\gamma}] \mapsto [\varphi_{\alpha}^{-1} \circ \bar{\gamma}]$.

Claim: The map $h_{\beta\alpha} := \varphi_{\beta*p} \circ (\varphi_{\alpha*p})^{-1} : T_{p_{\alpha}} \mathbf{R}^n \to T_{p_{\beta}} \mathbf{R}^n$ is linear.

Proof: Let $J = J_{\varphi_{\beta} \circ \varphi_{\alpha}^{-1}}(\varphi_{\alpha}(p))$, and let $g_{\beta\alpha} : \mathbf{R}^n \to \mathbf{R}^n$ be the linear map $v \mapsto Jv$. For every curve $\bar{\gamma}$ based at p_{α} , we have

$$h_{\beta\alpha}([\bar{\gamma}]) = \varphi_{\beta*p}\left((\varphi_{\alpha*p})^{-1}([\bar{\gamma}])\right) = \varphi_{\beta*p}\left([\varphi_{\alpha}^{-1} \circ \bar{\gamma}]\right) = [\varphi_{\beta} \circ \varphi_{\alpha}^{-1} \circ \bar{\gamma}],$$

and thus

$$\iota_{\beta}\left(h_{\beta\alpha}([\bar{\gamma}])\right) = (\varphi_{\beta} \circ \varphi_{\alpha}^{-1} \circ \bar{\gamma})'(0) = J\bar{\gamma}'(0) = J\iota_{\alpha}[\bar{\gamma}].$$

Hence $\iota_{\beta} \circ h_{\beta\alpha} = g_{\beta\alpha} \circ \iota_{\alpha}$, so $h_{\beta\alpha} = \iota_{\beta}^{-1} \circ g_{\beta\alpha} \circ \iota_{\alpha}$, a composition of three linear maps.

Using the vector-space operations we've previously defined on tangent spaces of \mathbf{R}^n , we define vector-space operations on T_pM induced by the chart $(U_{\alpha}, \varphi_{\alpha})$ by setting

$$v +_{\alpha} w = (\varphi_{\alpha*p})^{-1}(\varphi_{\alpha*p}v + \varphi_{\alpha*p}w), \quad c \cdot_{\alpha} v = (\varphi_{\alpha*p})^{-1}(c\varphi_{\alpha*p}v).$$

for all $v, w \in T_p M$ and $c \in \mathbf{R}$. We define vector-space operations on $T_p M$ induced by the chart (U_β, φ_β) analogously. Using the linearity of $h_{\beta\alpha}$ shown above, we have

Similarly, $c \cdot_{\alpha} v = c \cdot_{\beta} v$.

Hence the vector-space structures on T_pM induced by any two charts are the same. Thus T_pM has a canonical vector-space structure, the one induced by any chart containing p.