
Differential Geometry—MTG 6256—Fall 2017
Problem Set 1: Fun with Matrices

Below, Mn(R) denotes the vector space of n× n real matrices, and GL(n,R) the
subset of invertible matrices.

Several problems on this list were already done, or essentially done, in class; they
are included as a guide and a reminder. For the same reason, some facts stated in
class are stated again here. Problems 1–9 are meant to be done in the given order; in
many cases the results of earlier problems are applicable to later problems. Problem
10 does not really use any of the other problems.

When asked to find the derivative of a map, express your answer by writing down
a formula that gives all directional derivatives.

Required problems (to be handed in; due-date TBA): 2, 3, 4, 10ab. You
should also read the footnote in problem 7. In doing any of these problems, you may
assume the results of all earlier problems (optional or required).

Optional problems: All the ones that are not required.

1. Let U ∈ R be open, W a finite-dimensional vector space, f : U → W differentiable
at p ∈ U . Show that (Dpf)(1) = f ′(p).

2. Let V,W1,W2 be finite-dimensional vector spaces of positive dimension, U ⊂ V
open, p ∈ U , and gi : U → Wi differentiable at p for i = 1, 2. Define f : U → W1⊕W2

by f(q) = (g1(q), g2(q)). Show that f is differentiable at p and compute Df |p(v) for
arbitrary v ∈ V .

Note: one general approach to a problem of the form “show that a function F is
differentiable at point q, and compute the derivative DF |q” is to compute all the direc-
tional derivatives (DqF )(v). If this expression is not linear in v, then F is not differen-
tiable at q (and you were instructed to show something that was false). If “(DqF )(v)”
is linear in v, then the linear transformation T defined by T (v) = (DqF )(v) is the
only candidate for DF |q. You can then try to show that F is differentiable at q either
by plugging this T into the definition of “differentiable at q” and showing that the
relevant limit is zero, or by showing that, for all fixed v, the map q̃ 7→ (Dq̃F )(v)
is continuous in q̃ (in which case, automatically, F is not merely differentiable at q,
but continuously differentiable at q). The former approach is the one to use in this
problem; nothing in the hypotheses implies continuity of the directional derivatives.

3. Define µ : Mn(R)⊕Mn(R) → Mn(R) by µ(A,B) = AB (matrix multiplication).
Show that µ is differentiable, and compute its derivative.

4. Let g, h : Mn(R) → Mn(R) be differentiable and define f(A) = g(A)h(A). Note
that f = µ◦ j, where µ is the map in problem 3 and j : Mn(R)→Mn(R)⊕Mn(R) is
defined by j(A) = (g(A), h(A)). Prove that f is differentiable, and (using directional
derivatives) express the derivative of f in terms of the derivatives of g and h.
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If your answer is correct, then in the case n = 1, you should find with the aid
of problem 1 that you’ve recovered the “product rule” from Calculus 1. Thus, the
Calculus-1 product rule is a corollary of the (multivariable) Chain Rule.

5. Define f : Mn(R)→Mn(R) by f(A) = AtA, where At is the transpose of A. Show
that f is differentiable and find its derivative.

6. Let m ≥ 1 be an integer and let f(A) = Am for A ∈ Mn(R). Show that f is
differentiable and find its derivative.

7. We saw in class that GL(n,R) is an open subset of Mn(R). Show that it is also
dense. Hint for a quick proof: characteristic polynomial. (Look up the term if you’ve
forgotten what it means, or never learned it.) Of course, there are many other proofs
as well.

8. Define ι : GL(n,R)→Mn(R) by ι(A) = A−1. In this exercise, you will show that
ι is differentiable by a method different from the power-series approach we used in
class1, without needing to show ahead of time that ι is continuous. (In class, I used
the continuity of ι to deduce that directional derivatives were continuous, and said
that continuity is not hard to show. That fact is true; we just don’t need it in the
approach below. Once differentiability is shown, we can deduce continuity of ι from
the general fact that differentiability implies continuity.) The idea is the following:

• For a fixed A, we find a linear transformation T that is the only possible candi-
date T for the derivative of ι at A.

• We plug this T into the quotient whose limit we take in the definition of “deriva-
tive”, and show directly that the limit of the quotient is zero.

The same method can be used in many other examples. Usually the candidate T is
found by computing directional derivatives, but in the case of ι there is a “cheaper”
approach, which is part (a) below.

(a) Using the result of problem 4, show that if ι is differentiable, then (DAι)(B) =
−A−1BA−1 for all A ∈Mn(R), B ∈ GL(n,R). Note that for fixed A, this is linear in
B.

1Neither this method nor the power-series method is the fastest way to show that ι is differen-
tiable. The fastest way is simply to observe that there is an explicit formula for the inverse of an
invertible matrix A, expressing the entries of A−1 as rational functions of the entries of A, where
the denominator of each rational function is det(A) (see the last sentence of problem 10(c)). Thus,

using composing appropriately with an isomorphism between Mn(R) and Rn2

, ι becomes a map

from an open set in Rn2

to Rn2

, each of whose component-functions is a rational function with
nonzero denominator. Each component-function is therefore not just differentiable, but C∞, and
therefore ι is actually a C∞ map. This fact is important to know, independent of this homework
problem. The purpose of this homework problem is intended to teach some other ideas related to
the matrix-inversion map.
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(b) Show that if A ∈Mn(R), then A is invertible if and only if A is bounded below,
i.e. iff there exists c > 0 such that ‖Av‖ ≥ c‖v‖ for all v ∈ Rn.

(c) Using part (b) and the triangle inequality, show that for all A ∈ GL(n,R),
there exists δ > 0 such that if ‖B‖ < δ then A + B is bounded below, hence is
invertible. (This gives another proof that GL(n,R) is open in Mn(R), of course.)
Here and below, the norm used on Mn(R) is the operator norm.

(d) Fix A ∈ GL(n,R) and define T to be the linear transformation found above
in part (a), the map B 7→ −A−1BA−1. Using just algebraic manipulation and the
submultiplicativity of the operator norm, show that ‖ι(A + B) − ι(A) − T (B)‖ ≤
‖(A+B)−1‖ ‖A−1‖2 ‖B‖2.

(e) Show that if A and c are as in part (b), then ‖A−1‖ ≤ 1
c
.

Note: Since 1 = ‖I‖ = ‖AA−1‖ ≤ ‖A‖ ‖A−1‖, we have the simple lower bound
‖A−1‖ ≥ ‖A‖−1. But there is no general upper bound on ‖A−1‖ in terms of ‖A‖.

(f) Use part (e) to show that your work in part (c) actually gives you, for fixed
A, a uniform upper bound on ‖(A+B)−1‖ if ‖B‖ is sufficiently small.

(g) Now show that if A ∈ GL(n,R) then limB→0
‖ι(A+B)−ι(A)−T (B)‖

‖B‖ = 0, hence
that ι is differentiable at A.

9. Extend the result of problem 6 to negative integral exponents. (For A ∈ GL(n,R)
and m ≥ 1, A−m is defined to be (A−1)m.)

10. The determinant function det : Mn(R)→ R is a polynomial in n2 variables, so it
is certainly C1 (in fact C∞). There are several ways to compute its derivative. The
steps below constitute a method that involves little computation but a bit of thought.

(a) Let I ∈ Mn(R) be the identity and let B ∈ Mn(R). Compute DI(det)(B),
and express the answer as a simple invariant of the matrix B.

(b) Let A ∈ GL(n,R), B ∈ Mn(R). Compute DA(det)(B). (Hint: use (a).) Re-
express your result as a formula for the derivative (or directional derivatives)2 of the
function log | det |.

(c) Use the density statement in problem 7 to extend the formula for DA(det) from
A ∈ GL(n,R) to A ∈Mn(R). The answer can be rewritten in terms of the “cofactor”
matrix cof(A) that arises in computing the inverse of a matrix. (Recall that if A is
invertible, then A−1 = 1

det(A)
cof(A), or else the transpose of this, depending on your

definition of cof(A).)

2The words “the derivative (or directional derivatives) of” were omitted from the original posting
of this problem.
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