
Differential Geometry—MTG 6256—Fall 2017
Problem Set 2 (updated 9/23/17)

Due-date: Mon. 10/2/17

Required problems (to be handed in; due-date TBA): 2a, 3c, 4ace. In
doing any of these problems, you may assume the results of all earlier problems
(optional or required).

Optional problems: All the ones that are not required.

Below:

• Whenever we refer to an atlas on an already-fixed manifold, we mean mean an
atlas within the (explicitly or implicitly) already-fixed maximal atlas.

• I use the words “natural(ly)” and “canonical(ly)” without a formal, mathemat-
ically precise, universally applicable definition. Whenever one of these words
comes up, it should be clear from context what it means in that context.

• “Smooth map of manifolds” means “smooth map from one manifold to another”.

1. Let M be a manifold, U ⊂ M a nonempty open set. Show that an atlas on M
naturally gives rise to an atlas on U of the same dimension, hence that U inherits a
manifold structure.1

2. Covering spaces. A covering space of topological space X is a pair (X̃, π), where X̃

is a topological space and π : X̃ → X is a continuous surjective map with the following
property: for each p ∈ X, there is an open neighborhood U of p such that π−1(U) is

a union of disjoint open sets in X̃, each of which is mapped homeomorphically by π
to U . (Surjectivity is automatic if “union” is replaced by “non-empty unuion”.) The
map π is called the projection or the covering map.

Below, assume that M,N are manifolds and that (M̃, π), (Ñ , π′) are covering
spaces of M,N respectively.

(a) Let m = dim(M). Show that an atlas on M gives rise to an m-dimensional

atlas on M̃ , hence that M̃ naturally inherits the structure of a smooth m-dimensional
manifold. (For this reason we usually refer to M̃ or (M̃, π) as a covering manifold of
M , rather than just a covering space.)

(b) Definition. Let X, Y be manifolds. A map F : X → Y is a local diffeomor-
phism if F is an open map and such that every p ∈ X has an open neighborhood U
with the property that F |U : U → F (U) is a diffeomorphism. Here, F (U) is an open
set since the map F is open, and naturally carries a manifold structure by problem

1Once we define “submanifold”, an open set as above will be the most trivial example of a
submanifold.
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1. (Later in the course, we will be able to replace this definition by a briefer, more
standard, but less self-explanatory one that is equivalent.)

Show that the natural smooth structure (equivalently, maximal atlas) on M̃ in
part (a) is the unique smooth structure for which π is a local diffeomorphism.

(c) Suppose that M̃ is a manifold of dimension m. Assume that for any two open

sets Ũ1, Ũ2 ⊂ M̃ for which π|Ũi
is injective and π(Ũ1) = π(Ũ2), the map (π|Ũ2

)−1◦π|Ũ1

is smooth. (Hence all such maps are diffeomorphisms.) Show that M naturally
inherits the structure of a smooth m-dimensional manifold.

(d) Let F : M → N be a continuous map, and let F̃ be a continuous map from M̃
to N , from M → Ñ , or from M̃ → Ñ . If the corresponding diagram below commutes,
we call F̃ a lift of F . Show that for lifts of all three types, cases, if F̃ is a lift of F ,
then F̃ is smooth if and only if F is smooth.

Note: Given only F , a unique lift F̃ : M̃ → N always exists, namely F̃ = F ◦ π :
M → N . The other two types of lifts do not always exist, and when they exist, they
may not be unique. Given only F̃ , we say that F̃ descends to a map M → N if there
exists F : M → N of which F̃ is a lift. A map F̃ : M → Ñ descends uniquely to the
map F = π′ ◦ F̃ ; in the other two cases, F̃ does not always descend, but when it does
descend, the map to which it descends is unique.
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Figure 1: Diagrams for problem 2

3. Parts (a), (b), (c) of this problem have no dependence on each other; they can be
done in any order.

Let F : M → N be a smooth map of manifolds.2

(a) Prove that if X ⊂ M is a submanifold, then F |X : X → N (the restriction of
F to X) is also a smooth map of manifolds.

(b) Suppose that the image of F contained in a submanifold Y of N . Prove that
F , viewed as a map M → Y , is also a smooth map of manifolds.

(c) Define G : M → M ×N by G(p) = (p, F (p)). Show that G is a smooth map
of manifolds, and that its image is a submanifold of M ×N .

2This is short-hand language for: “Let M,N be manifolds and let F : M → N be a smooth
map.”
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Remark: Let us informally define “smooth subset of a manifold” to mean “sub-
manifold”. The image of a smooth map need be smooth (for example, consider the
image of the sine function R → R), but what you’ve shown above is that the graph
of a smooth map is always smooth (as, indeed, the graph of the sine function is).

4. Real and complex projective spaces. If V is a vector space over a field F, projec-
tivization P (V ) is defined (as a set) to be the set of one-dimensional vector subspaces
of V (“lines through the origin in V ”). Alternatively, P (V ) = (V \ {0})/ ∼, where
the equivalence relation ∼ is defined by v ∼ w =⇐⇒ v = tw for some t ∈ F.

Let n ≥ 0, and let V = Fn+1, where F is either R or C. Let π : V → P (V ) be
the quotient map, and denote π(v) by [v] whenever convenient. For 0 ≤ j ≤ n define

Ũj = {(x0, . . . , xn) ∈ Fn+1 | xj 6= 0} ⊂ V,

Uj = π(Ũj) ⊂ P (V ).

Clearly {Ũj}n+1
j=0 is an open cover of V \ {0}, so {Uj}n+1

j=0 is an open cover of P (V ). In

view of the equivalence relation defining P (V ), the maps φ̃j : Uj → Fn defined by

φ̃j(x
0, . . . , xn) =

(
x0

xj
, . . . ,

xj−1

xj
,
xj+1

xj
, . . . ,

xn

xj

)
(0.1)

induce well-defined maps φj : Uj → Fn,

φj([v]) = φ̃j(v).

(In (??), it is understood that “x0

xj ” is omitted if j = 0 and that xn

xj ” is omitted if
j = n. Alternative notation for the right-hand side is

(
x0

xj
, . . . ,

x̂j

xj
, . . . ,

xn

xj
),

where the “hat” denotes deletion of the term indexed by j.)

(a) Identify the sets φj(Uj) and φj(Ui

⋂
Uj) (i 6= j) explicitly, and compute the

overlap-maps φi ◦ φ−1j . (As always, in the overlap-map expression “φi ◦ φ−1j ”, it is
understood that “φj” is short-hand for “ φj|Ui∩Uj

”.)

(b) Real projective space. Show that {(Ui, φi)}ni=0 is a smooth, n-dimensional atlas
on RP n := P (Rn+1). Hence RP n, with the corresponding maximal atlas, is an
n-dimensional manifold.

Whenever anyone speaks of RP n as a manifold, it’s implicit that this is the smooth
structure.

(c) Complex projective space. Any real isomorphism from the two-dimensional
real vector space C to R2, such as z 7→ (Re(z), Im(z)), induces a real isomorphism
Cn → R2n for n ≥ 1. By composing the chart-maps φj with such an isomorphism,
we obtain maps Uj → R2n. To avoid notational clutter, in this problem we will abuse
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notation slightly, allowing “φj” to stand both for our previously-defined Uj → Cn

and for the corresponding map Uj → R2n.
Show that {(Ui, φi)}ni=0 is a smooth, 2n-dimensional atlas on CP n := P (Cn+1).

In the formula for φi ◦ φ−1j , you may treat n-tuples of complex numbers as elements
of R2n wherever necessary. Hence CP n, with the corresponding maximal atlas, is a
2n-dimensional manifold.

Whenever anyone speaks of CP n as a manifold, it’s implicit that this is the smooth
structure.

Remark. There is such a thing as a complex manifold, and as you might con-
jecture, CP n is a complex n-dimensional manifold. However, the concept is subtler
than you might think, and for us, “manifold” will always mean “real manifold” unless
otherwise specified.

(d) For V = Rn+1 and V = Cn+1, show that the topology on P (V ) induced by the
atlases in parts (b) and (c) is the same as the quotient topology. (In case you need
to review the meaning of quotient topology, it’s in the handout “Point-Set Topology:
Glossary and Review” on the class home page.)

(e) Show that CP 1 is diffeomorphic to S2 by explicitly exhibiting a diffeomorphism
F : CP 1 → S2 that maps U0 to S2 \ {north pole}, and maps U1 to S2 \ {south pole}.

Remark. CP 1 is also called the Riemann sphere. As a set, CP 1 = U0

∐
{[(0, 1)]}

(“
∐

” means “disjoint union”). In the Riemann sphere, our set U0 is implicitly iden-
tified with φ0(U0) = C, and the point [(0, 1)] is regarded as “the point at infinity”.
If you did part (a) correctly, you should find that both overlap maps are given by
z 7→ 1

z
, with domain C \ {0}.

(f) Show that the quotient map (or projection) π : V \ {0} → P (V ) is a smooth
map of manifolds in the cases V = Rn+1 and V = Cn+1.

(g) Hopf maps. For V = Cn+1 ∼=R R2n+2, let H be the restriction of the projection
π to the unit sphere S2n+1 ⊂ R2n+2. (i) Show that H is surjective and smooth.
(Note: there is a reason one part of problem 3 was given before this problem.) (ii)
For n = 1, let F be the diffeomorphism you found in (d), and find an explicit formula
for H ◦ F : (S3 ⊂ C2) → S2. There is more than one map F that works in part
(d), but if you found the “most obvious” one, you should find that H ◦ F is what
I called the Hopf map in class. The name “the Hopf map” is applied to H and to
H ◦ (diffeo CP 1 → S2). For n > 1, the maps H : S2n+1 → CP n are called generalized
Hopf maps.

5. The Grassmannian or Grassmann manifold Gk(Rn) (0 < k < n) is defined to be
the set of k-dimensional subspaces of Rn. (This is a generalization of real projective
space; G1(R

n) = P (Rn) = RP n−1. Notations for the Grassmannian vary in the
literature: some people use the notation “Gk(Rn)” for the set of subspaces of Rn of
codimension k. The notations Gk,n and Gn,k are also used.)

A smooth atlas on Gk(Rn) can constructed as follows. Endow Rn with standard
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inner product. Observe that given any k-plane X through the origin, any sufficiently
close k-plane Y through the origin is the “orthogonal graph” of a unique linear map
T : X → X⊥, where X⊥ is the orthogonal complement of X. (“Sufficiently close”
means that Y

⋂
X⊥ = {0}. “Orthogonal graph of T” means {v + T (v) | v ∈ X}.

Since Rn = X⊕X⊥, there is a natural bijection between Rn and X×X⊥. Composing
appropriately with this bijection identifies the orthogonal graph of T with the “true”
graph of T .) For each k-element subset I = {i1, . . . , ik} of {1, 2, . . . , n}, let XI be
the subspace consisting of all x ∈ Rn all of whose coordinates other than those in
positions i1, . . . , ik vanish. Let VI ⊂ Rn be the (set-theoretic) complement of X⊥I in
Rn.

(a) Show that {VI} is an open cover of Rn \ {0} and determines a cover {UI}
of Gk(Rn), that, for k = 1, reduces to the open cover used in problem 3b (modulo
replacing Rn+1 with Rn).

(b) Show that there is a 1–1 correspondence φI from UI to Hom(XI , X
⊥
I ). Hence

UI is in 1–1 correspondence with the set of (n− k)× k matrices, hence with Rk(n−k).

(c) Show that the overlap maps φJ ◦φ−1I are smooth (this requires quite a bit more
work for general k than did the k = 1 case in problem), and hence that Gk(Rn) is a
manifold of dimension k(n− k).
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