
Differential Geometry—MTG 6256—Fall 2017
Problem Set 5

Due-date: 12/6/17

Required problems (to be handed in): 1, 2, 6bce. In doing any of these
problems, you may assume the results of all earlier problems (optional or required).

Required reading : The statements of all the problems and Remarks. (Consider
the Remarks to be part of one of the missed lectures.)

Optional problems: All the ones that are not required.

1. Let M be a manifold and let f, g : M → R be smooth functions. Show that

d(fg) = g df + f dg.

2. Let M be a manifold, p ∈M , ξ ∈ T ∗pM . Prove that there exists a smooth function
f : M → R such that f(p) = 0 and df |p = ξ.

3. Let V be an n-dimensional vector space, 0 < n <∞, let {θi}ni=1 be a basis of V ∗,
and let p ∈ {1, 2, . . . , n}. Show that{

θi1 ∧ θi2 ∧ · · · ∧ θip
}
1≤i1<i2<···<ip≤n

is a basis of
∧p(V ∗). (I.e. fill in the details of the proof that was sketched in class.)

4. Recall that a projection from a vector space V to itself is a linear map P : V → V
such that P 2 = P .

Let V be a vector space of finite dimension n, assume 0 < k ≤ n, and define a

linear map Q : V ⊗k :=

k factors︷ ︸︸ ︷
V ⊗ . . .⊗ V →

∧k(V ) by setting

Q(v1 ⊗ . . .⊗ vk) = v1 ∧ · · · ∧ vk
and extending linearly. Show that Q = c(k)P for some projection P : V ⊗k →∧k(V ) ⊂ V ⊗k and scalar c(k), and give the value of c(k).

5. Let V be a finite-dimensional vector space. For all j, k ≥ 0, we have defined the
wedge-product map

∧jV ∗×
∧kV ∗ →

∧j+kV ∗, (ω, η) 7→ ω∧ η. Thus we have actually
defined a collection of wedge-product maps, indexed by pairs (j, k) of non-negative
integers.

(a) Show that this collection of maps is associative, in the following sense: for all
j, k, l ≥ 0 and ω ∈

∧jV ∗, η ∈
∧kV ∗, ξ ∈

∧lV ∗,

(α ∧ β) ∧ ξ = α ∧ (β ∧ ξ). (1.1)
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(b) Set-up: Careful wording had to be used in part (a), because, by definition, the
only operations that can be associative are binary operations on a single set S, i.e.x
maps S × S → S. What equation (1.1) actually says, in temporary, self-explanatory
notation that we’ll use for the rest of this problem, is

(α ∧j, k β) ∧j+k, l ξ = α ∧j, k+l (β ∧k, l ξ). (1.2)

There are two ways we can modify our definition of wedge-product so that “∧”
becomes a true associative operation on some set S. The naive way is to take the
underlying set for the operation to be S =

∐
k

∧kV ∗. Then, for any ω, η ∈ S, we have
ω ∈

∧jV ∗, η ∈
∧kV ∗ for some unique j, k, and we can make definition ω∧η = ω∧j, kη.

(The last equation was used implicitly when we defined wedge-product in class.) With
this definition, ∧ becomes a map S × S → S, and part (a) shows that this binary
operation is associative.

A more elegant and useful (if initially less intuitive) solution Instead of defining
wedge-product as an operation on the disjoint union of the vector spaces

∧kV ∗,
we define it as an operation on the direct sum of these vector spaces. Specifically,
define

∧∗(V ∗) =
⊕

k≥0
∧kV ∗. (The star in “

∧∗” has nothing to do with pullback or
dualization; it’s just a placeholder for the degrees in the direct summands.) Rather
than writing an element of the direct sum in the form (ω0, ω1, ω2, . . . ), with ωk ∈∧kV ∗, it is convenient to use the canonical identification of

∧kV ∗ with a subspace of
the direct sum (namely {0} × {0} × · · · × {0} ×

∧kV ∗ × {0} × {0}), allowing us to
write (ω0, ω1, ω2, . . . ) as

∑
k ωk := ω0 +ω1 +ω2 + . . . (well-defined since there are only

finitely many nonzero terms in the sum). We then define(∑
k

ωk

)
∧

(∑
k

ηk

)
=
∑
k, l

ωk ∧k, l ηl (1.3)

Problem: Show that the map ∧ :
∧∗V ∗ × ∧∗V ∗ → ∧∗V ∗ defined by (1.3) is

bilinear and associative.

Remark. For both the “naive” and “elegant” ways of defining approach to
defining wedge-product as a binary operation ∧ on some set, the restriction of ∧
to
∧jV ∗ ×

∧kV ∗ is precisely the map ∧j, k, which allows us to drop the subscripts
(and write (1.2) as (1.1)) without abusing notation. However, with the naive def-
inition, “bilinear” is meaningless, since the disjoint union of vector spaces is not a
vector space. The property of bilinearity is an important feature of wedge-product.
Although each of the maps ∧j,k is bilinear, if we want to have a true associative
operation “∧” that is also bilinear, we must use the second approach.

We have already seen the second approach used in our definition of the tensor
algebra of a vector space. The idea is very general and important, and is encapsulated
in the concept of a Z-graded algebra.

A Z–graded vector space is a vector space of the form W∗ :=
⊕

k∈ZWk, where
{Wk}k∈Z is a collection of vector spaces indexed (“graded”) by Z. For simplicity,
canonically identify Wk with its image in the direct sum. A Z-graded algebra is a
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Z-graded vector space W∗ equipped with a bilinear map ? : W∗ ×W∗ → W∗ that, for
each index-pair (j, k), maps Wj ×Wk into Wj+k.

More generally, given all the data above but with the index-set Z replaced by
any nonempty subset A of Z closed under addition (setting W∗ =

⊕
k∈AWk), we can

define a Z-graded algebra (W̃∗, ?̃) by (i) defining W̃k = Wk for k ∈ A, and {0} for
k /∈ A, (ii) setting W̃∗ =

⊕
k∈Z W̃k (which we may canonically identify with W∗⊕W ′

∗,

where W ′
∗ =

⊕
k/∈A W̃k

∼= {0}), and (iii) defining w?̃ v = w ? v if w, v ∈ W∗, and

w?̃ v = 0 otherwise. The inclusion map of W∗ in W̃∗ is a graded-algebra isomorphism:
an isomorphism of Z-graded algebras that preserves grading. Since this identification
of (W∗, ?) with a Z-graded algebra is canonical, we allow ourselves to call (W∗, ?)
itself a Z-graded algebra. In particular, we do this often when A consists of the
non-negative integers.

If the data we start with are just a collection {Wk}k∈A⊂Z of vector spaces (with
A nonempty and closed under addition) and a collection of bilinear maps ?j,k : Wj ×
Wk → Wj+k (one map for each index-pair (j, k)), we canonically construct a Z-
graded algebra by setting W∗ =

⊕
k∈AWk and defining ? : W∗ × W∗ → W∗ by(∑

j wj

)
?
(∑

j vj

)
=
∑

j, k wj ?j, k vk. (Remember that by definition of “direct sum

of an arbitrary collection of vector spaces”, there are only finitely many nonzero terms
in
∑

j wj and
∑

j vj, so the sums in this equation are well-defined.) It is easily seen
that ? is bilinear and maps Wj ×Wk into Wj+k for all j, k ∈ A. Hence (W∗, ?) is a
Z-graded algebra. If the collection of maps ?j,k is “associative in the sense of problem
5a”, then ? is (truly) associative, and (W∗, ?) is an associative algebra.

All of the above works with the index-set Z replaced by any abelian group G, so
we may speak of G-graded algebras. The grading-groups that arise most often are Z
and Z2.

6. Let M,N,Z be manifolds. Recall that given a smooth map F : M → N and a
k-form ω on N , with k > 0, the pullback of ω by F is the k-form F ∗ω on M defined
by

(F ∗ω)p(v1, . . . , vk) = ωF (p)(F∗p v1, . . . , F∗p vk) ∀p ∈M and v1, . . . , vk ∈ TpM. (1.4)

(a) Let F : M → N be a smooth map and let k ≥ 0. Show that the map
Ωk(N)→ Ωk(M) given by ω 7→ F ∗ω is linear.

(b) Let F : M → N be a smooth map and let ω, η be differential forms on N .
Show that F ∗(ω ∧ η) = (F ∗ω)∧ (F ∗η). (Do not forget the case in which the degree of
ω or η is zero.)

(c) Let F : M → N and G : N → Z be smooth maps, and let ω be a differential
form (of arbitrary degree) on Z. Show that (G ◦ F )∗ω = F ∗(G∗ω).

(d) Show that if F : M → N is a diffeomorphism, then the linear map F ∗ :
Ωk(N)→ Ωk(M) is invertible for each k, with inverse given by (F ∗)−1η = (F−1)∗η.
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(e) Show that if F : M → N is a diffeomorphism, ω ∈ Ω1(N), and X is a vector
field on N , then

F ∗(〈ω,X〉) = 〈F ∗ω, F ∗X〉. (1.5)

(In (1.5), 〈ω,X〉 is the function p 7→ 〈ωp, Xp〉; both sides of the equation are real-
valued functions on M .) Where is the assumption that F is a diffeomorphism used?

Remark 1. Using the same idea as in problem 5 and the subsequent Remark,
we define Ω∗(M) =

⊕
k≥0 Ωk(M), and use the collection of wedge-product maps

Ωj(M) × Ωk(M) → Ωj+k(M) to define wedge-product as a bilinear map Ω∗(M) ×
Ω∗(M) → Ω∗(M). The space Ω∗(M), equipped with this wedge-product, is an
associative Z-graded algebra. Parts (a) and (b), combined, are therefore equiva-
lent to the simple statement that, for any smooth map F : M → N , the map
F ∗ : Ω∗(N)→ Ω∗(M) is a graded-algebra isomorphism.

Remark 2. Given finite-dimensional vector spaces V,W , and a linear map L :
V → W , the natural adjoint of L (or dual map) is the linear map L∗ : W ∗ → V ∗

defined by setting L∗(ξ) = ξ ◦ L for all ξ ∈ W ∗. The notation L∗ is consistent with
our notation “pullback of a real-valued function by a map”: given a map ξ : W → R,
and a map L : V → W , we pull ξ back to a function on V simply by composing on
the right with L. However, there is more going on.

Using composition, we could similarly pull back any function on W by any map
V → W , even if V and W were merely sets. But here they are vector spaces, and the
map L is linear. Still, even knowing that L : V → W is a linear map between vector
spaces, we could pull back any map f : W → R (not necessarily linear) by L, and
write L∗f for the pulled-back map f ◦ L : V → R. We could then view “L∗” as a
map from {all functions W → R} to {all functions V → R}, and this “grand” map
L∗ would even be linear.1 But this is not customarily what the notation L∗ means
when L is linear.

Rather, in this context—where the essential ingredients are that V,W are vector
spaces (rather than that they are manifolds, or arbitrary sets) and that L is linear—
we restrict attention to pulling back linear maps ξ : W → R to maps ξ ◦ L : V → R.
The resulting maps ξ ◦ L are themselves linear, and the map W ∗ → V ∗ given by
ξ 7→ ξ ◦ L is linear, so the “grand” pullback operation, by L, from {all functions
W → R} to {all functions V → R}, restricts to a linear map from {linear functions
W → R} to {linear functions V → R}. We reserve the notation L∗ for this restricted
pullback operation, a linear map W ∗ → V ∗.

Observe that using dual-pairing notation we could write the definition of L∗ as:

〈L∗ξ, v〉 = 〈ξ, Lv〉 ∀ξ ∈ W ∗, v ∈ V.
1(1) Remember that for any nonempty set S and any vector space Z, the set Maps(S,Z) of

all functions from S to Z has a natural vector-space structure, induced by pointwise operations
((f + g)(p) = f(p) + g(p), etc.). Hence linearity of a map from one such map-space to another is
well-defined. (2) Note that the dimension of Maps(S,R) is the cardinality of S. Thus Maps(V,R)
has uncountable dimension if V is a nonzero vector space.
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Hence, given manifolds M,N , a smooth map F : M → N , and a point p ∈ N , the nat-
ural adjoint of the linear map F∗p : TpM → TF (p)N is the linear map
(F∗p)

∗ : T ∗F (p)N → T ∗pN defined by setting

〈(F∗p)∗ξ, v〉 = 〈ξ, F∗p v〉 ∀ξ ∈ T ∗F (p)N, v ∈ TpM. (1.6)

(So, just as tangent vectors naturally push forward under general smooth maps,
covectors naturally pull back.)

The notation “(F∗p)
∗” is rarely used, since it is somewhat bewildering to look at:

the upper-star is denoting a pullback by the linear map F∗p, which already contains a
lower-star denoting a push-forward induced by the map F . Let us temporarily use the
notation F ∗p for (F∗p)

∗ (temporarily because the notation is unconventional.) Then
the equation in (1.6) can alternatively be written as

(F ∗p(ξ))(v) = ξ(F∗p v).

Thus, when k = 1, (1.4) says that (F ∗ω)p = F ∗p(ωF (p)). In other words, we pull back
1-forms by pulling back their values (covectors) pointwise, using the natural adjoints
of the derivatives F∗p.

7. Let M be a manifold. Define Ω0(M) =
⊕

k even Ωk(M), Ω1(M) =
⊕

k odd Ωk(M).
Here we are regarding the subscripts 0 and 1 as the elements of the group Z2, indexing
two vector spaces. This gives Ω∗(M) the structure of a Z2-graded vector space. Show
that Ω∗(M), equipped with wedge-product, is a Z2-graded algebra.
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