Differential Geometry—MTG 6256—Fall 2017
Problem Set 5
Due-date: 12/6/17

Required problems (to be handed in): 1, 2, 6bce. In doing any of these
problems, you may assume the results of all earlier problems (optional or required).

Required reading : The statements of all the problems and Remarks. (Consider
the Remarks to be part of one of the missed lectures.)

Optional problems: All the ones that are not required.
1. Let M be a manifold and let f,g: M — R be smooth functions. Show that

d(fg) = gdf + fdg.

2. Let M be a manifold, p € M, § € T7 M. Prove that there exists a smooth function
f M — R such that f(p) =0 and df|, = &.

3. Let V be an n-dimensional vector space, 0 < n < oo, let {0}, be a basis of V*,
and let p € {1,2,...,n}. Show that
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is a basis of AP(V*). (Le. fill in the details of the proof that was sketched in class.)

4. Recall that a projection from a vector space V to itself is a linear map P: V — V
such that P? = P.

Let V be a vector space of finite dimension n, assume 0 < k£ < n, and define a
k factors

—
linear map Q : V¥ .=V ®...®V — A*(V) by setting

Qi ®...Q0uv) =v A+ Ay

and extending linearly. Show that Q = c(k)P for some projection P : V& —
AF(V) € V& and scalar ¢(k), and give the value of ¢(k).

5. Let V be a finite-dimensional vector space. For all j, k > 0, we have defined the
wedge-product map AYV* x AFV* = AITRV* (W, ) — w An. Thus we have actually
defined a collection of wedge-product maps, indexed by pairs (j, k) of non-negative
integers.

(a) Show that this collection of maps is associative, in the following sense: for all
Gk, 0>0and w e NNV*,ne NV* € e NV,

(@AB)NE=aNn(BAE). (1.1)



(b) Set-up: Careful wording had to be used in part (a), because, by definition, the
only operations that can be associative are binary operations on a single set S, i.e.x
maps S X S — S. What equation (1.1) actually says, in temporary, self-explanatory
notation that we’ll use for the rest of this problem, is

(@ Nk B) Njrw1 & = @ Nj et (B Ak1 €). (1.2)

There are two ways we can modify our definition of wedge-product so that “A”
becomes a true associative operation on some set S. The naive way is to take the
underlying set for the operation to be S =[], A*V*. Then, for any w,n € S, we have
w € NV*,n € N*V* for some unique 7, k, and we can make definition wAn = WA k1.
(The last equation was used implicitly when we defined wedge-product in class.) With
this definition, A becomes a map S x S — S, and part (a) shows that this binary
operation is associative.

A more elegant and useful (if initially less intuitive) solution Instead of defining
wedge-product as an operation on the disjoint union of the vector spaces \*V*,
we define it as an operation on the direct sum of these vector spaces. Specifically,
define A*(V*) = @, A"V*. (The star in “A*” has nothing to do with pullback or
dualization; it’s just a placeholder for the degrees in the direct summands.) Rather
than writing an element of the direct sum in the form (wp,w;,ws,...), with wy €
AFV*, it is convenient to use the canonical identification of A*V* with a subspace of
the direct sum (namely {0} x {0} x --- x {0} x A*V* x {0} x {0}), allowing us to
write (wo, w1, ws,...) as Y, Wi = wo+ws +wa+... (well-defined since there are only
finitely many nonzero terms in the sum). We then define

(Zwk> A <Z 77k> = Zwk Nk, 1M (1.3)

Problem: Show that the map A : A*V* x A*V* — A*V* defined by (1.3) is

bilinear and associative.

Remark. For both the “naive” and “elegant” ways of defining approach to
defining wedge-product as a binary operation A on some set, the restriction of A
to NV* x /\kV* is precisely the map A;, which allows us to drop the subscripts
(and write (1.2) as (1.1)) without abusing notation. However, with the naive def-
inition, “bilinear” is meaningless, since the disjoint union of vector spaces is not a
vector space. The property of bilinearity is an important feature of wedge-product.
Although each of the maps Aj;j; is bilinear, if we want to have a true associative
operation “A” that is also bilinear, we must use the second approach.

We have already seen the second approach used in our definition of the tensor
algebra of a vector space. The idea is very general and important, and is encapsulated
in the concept of a Z-graded algebra.

A Z-graded vector space is a vector space of the form W, := @, 5 Wi, where
{Wi}rez is a collection of vector spaces indexed (“graded”) by Z. For simplicity,
canonically identify Wy with its image in the direct sum. A Z-graded algebra is a



Z-graded vector space W, equipped with a bilinear map % : W, x W, — W, that, for
each index-pair (7, k), maps W; x W}, into W;_.

More generally, given all the data above but with the index-set Z replaced by
any nonempty subset A of Z closed under addition (setting W, = @jca Wi), we can
define a Z-graded algebra (W*,*) by (i) defining W), = Wy, for k € A, and {0} for
k¢ A, (ii) setting W, = @,z Wi (which we may canonically identify with W, & W/,
where W = @44 Wy, = {0}), and (iii) defining wkv = w % v if w,v € W,, and
w* v = 0 otherwise. The inclusion map of W, in W* is a graded-algebra isomorphism:
an isomorphism of Z-graded algebras that preserves grading. Since this identification
of (W,,*) with a Z-graded algebra is canonical, we allow ourselves to call (W,,x)
itself a Z-graded algebra. In particular, we do this often when A consists of the
non-negative integers.

If the data we start with are just a collection {Wj }reacz of vector spaces (with
A nonempty and closed under addition) and a collection of bilinear maps *; : W; x
Wy — Wiy (one map for each index-pair (j,k)), we canonically construct a Z-

graded algebra by setting W, = @, ., Wi and defining « : W, x W, — W, by
<Zj wj> * (Z] v]-) =D xWj*jk Uk (Remember that by definition of “direct sum
of an arbitrary collection of vector spaces”, there are only finitely many nonzero terms
in 3 w; and 3_;v;, so the sums in this equation are well-defined.) It is easily seen
that * is bilinear and maps W, x Wy, into W;, for all j,k € A. Hence (W,, %) is a
Z-graded algebra. If the collectlon of maps *;, is “associative in the sense of problem
ba”, then « is (truly) associative, and (W, *) is an associative algebra.

All of the above works with the index-set Z replaced by any abelian group G, so

we may speak of G-graded algebras. The grading-groups that arise most often are Z
and Z2.

6. Let M, N,Z be manifolds. Recall that given a smooth map F' : M — N and a
k-form w on N, with & > 0, the pullback of w by F' is the k-form F*w on M defined
by

(Frw)p(vr, .. vk) = wpey (Fipvr, ..o, Fipvp) Vo€ M and vy, ..., v, € T,M. (1.4)

(a) Let FF : M — N be a smooth map and let £ > 0. Show that the map
QF(N) — QF(M) given by w — F*w is linear.

(b) Let F': M — N be a smooth map and let w,n be differential forms on N.
Show that F*(wAn) = (F*w) A (F*n). (Do not forget the case in which the degree of
w or 7 is zero.)

(c) Let FF': M — N and G : N — Z be smooth maps, and let w be a differential
form (of arbitrary degree) on Z. Show that (G o F)*w = F*(G*w).

(
(d) Show that if FF : M — N is a diffeomorphism, then the linear map F* :
) — QF(M) is invertible for each k, with inverse given by (F*)~!n = (F‘l)*n.
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(e) Show that if FF': M — N is a diffeomorphism, w € Q'(N), and X is a vector
field on N, then
F*((w, X)) = (Frw, F* X). (1.5)

(In (1.5), (w, X) is the function p — (w,, X,); both sides of the equation are real-
valued functions on M.) Where is the assumption that F' is a diffeomorphism used?

Remark 1. Using the same idea as in problem 5 and the subsequent Remark,
we define Q*(M) = @,-,2*(M), and use the collection of wedge-product maps
QI(M) x Q¥(M) — QItF(M) to define wedge-product as a bilinear map Q*(M) x
QY (M) — Q*(M). The space Q*(M), equipped with this wedge-product, is an
associative Z-graded algebra. Parts (a) and (b), combined, are therefore equiva-
lent to the simple statement that, for any smooth map F : M — N, the map
F*: Q*(N) — Q*(M) is a graded-algebra isomorphism.

Remark 2. Given finite-dimensional vector spaces V, W, and a linear map L :
V' — W, the natural adjoint of L (or dual map) is the linear map L* : W* — V*
defined by setting L*(§) = £ o L for all £ € W*. The notation L* is consistent with
our notation “pullback of a real-valued function by a map”: given a map £ : W — R,
and a map L : V — W, we pull £ back to a function on V' simply by composing on
the right with L. However, there is more going on.

Using composition, we could similarly pull back any function on W by any map
V — W, even if V and W were merely sets. But here they are vector spaces, and the
map L is linear. Still, even knowing that L : V' — W is a linear map between vector
spaces, we could pull back any map f : W — R (not necessarily linear) by L, and
write L*f for the pulled-back map fo L : V — R. We could then view “L*” as a
map from {all functions W — R} to {all functions V' — R}, and this “grand” map
L* would even be linear.? But this is not customarily what the notation L* means
when L is linear.

Rather, in this context—where the essential ingredients are that V, W are vector
spaces (rather than that they are manifolds, or arbitrary sets) and that L is linear—
we restrict attention to pulling back linear maps £ : W — R tomaps £o L : V — R.
The resulting maps £ o L are themselves linear, and the map W* — V* given by
¢ +— £ oL is linear, so the “grand” pullback operation, by L, from {all functions
W — R} to {all functions V' — R}, restricts to a linear map from {linear functions
W — R} to {linear functions V' — R}. We reserve the notation L* for this restricted
pullback operation, a linear map W* — V*.

Observe that using dual-pairing notation we could write the definition of L* as:

(L*¢,0) = (€, Lv) VE€ W™, ve V.

1(1) Remember that for any nonempty set S and any vector space Z, the set Maps(S, Z) of
all functions from S to Z has a natural vector-space structure, induced by pointwise operations
((f+9)(p) = f(p) + g(p), etc.). Hence linearity of a map from one such map-space to another is
well-defined. (2) Note that the dimension of Maps(S,R) is the cardinality of S. Thus Maps(V,R)
has uncountable dimension if V' is a nonzero vector space.
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Hence, given manifolds M, N, a smooth map F : M — N, and a point p € N, the nat-
ural adjoint of the linear map F,, : T,M — TpyN is the linear map
(Fip)™ 2 ThyN — T, N defined by setting

((Fip)6,v) = (&, Fopv) VE € TN, v € T,M. (1.6)

(So, just as tangent vectors naturally push forward under general smooth maps,
covectors naturally pull back.)

The notation “(Fy,)*” is rarely used, since it is somewhat bewildering to look at:
the upper-star is denoting a pullback by the linear map F,,, which already contains a
lower-star denoting a push-forward induced by the map F'. Let us temporarily use the
notation F*? for (F.,)* (temporarily because the notation is unconventional.) Then
the equation in (1.6) can alternatively be written as

(F™P(€))(v) = E(Fipv).

Thus, when k = 1, (1.4) says that (F*w), = F*P(wp(y)). In other words, we pull back
1-forms by pulling back their values (covectors) pointwise, using the natural adjoints
of the derivatives Fj,.

7. Let M be a manifold. Define Qo(M) = @, ,oon (M), QU (M) =B, jqq U (M).
Here we are regarding the subscripts 0 and 1 as the elements of the group Z,, indexing
two vector spaces. This gives Q*(M) the structure of a Zs-graded vector space. Show
that Q*(M), equipped with wedge-product, is a Zs-graded algebra.



