
Differential Geometry—MTG 6256—Fall 2021
Problem Set 1

Due-date: Fri. 11/5/21

Required problems (to be handed in): 1, 2, 4ade. In doing any of these
problems or problem-parts, you may assume the results of all earlier problems or
problem-parts (optional or required).

Optional problems: All the ones that are not required.

Even when homework is well written, reading and grading it is very
time-consuming and physically difficult for me. To keep this task from being
more burdensome than it intrinsically needs to be:

1. Use plain, white, unlined, printer paper with no holes.

2. Make sure your work is neat and easy to read. It should either be typed (prefer-
ably in LaTeX) or written in pen or dark pencil, and there should be no
over-writing (superimposing new writing on old, with or without erasure of
the old writing first).

3. If you type your homework, use 12-point font. (LaTex often defaults to 10-point
font. To get 12-point font in, say, the “article” document class, the command I
use is \documentclass[12pt]{article}.)

4. Staple your sheets together in the upper left-hand corner. Any other means of
attachment makes more work for me. The staple should be close enough to the
corner that when I turn pages, nothing that you’ve written is obscured. (If you

have trouble getting the staple close enough to the corner to achieve this, you haven’t left

wide enough margins; see below.)

5. If you are writing on both sides of a sheet of paper, do not use paper/ink/pencil
combinations for which the writing on one side of the paper shows on the other
side (or darkens it).

6. Please use wide margins—at least 1.75”—on all four edges (left and right and
top and bottom). LaTeX preamble commands that will accomplish this in the
“article” document class are

\setlength{\textwidth}{5 in}
\setlength{\textheight}{7.3 in}
\setlength{\oddsidemargin}{.75 in}
\setlength{\topmargin}{0.2 in}

7. Make sure your sentences are unambiguous, as well as being correctly punc-
tuated, grammatically correct, and complete.
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Below:

• Whenever we refer to an atlas on an already-fixed manifold, we mean mean an
atlas within the (explicitly or implicitly) already-fixed maximal atlas.

• Any time a manifold M is constructed by giving an atlas on a set for which a
topology is not stated in advance, the topology on M is taken to be the one
induced by the atlas.

• I use the words “natural(ly)” and “canonical(ly)” without a formal, mathemat-
ically precise, universally applicable definition. Whenever one of these words
comes up, it should be clear from context what it means in that context.

• “Map” always means “continuous map”.

• “Smooth map of manifolds” means “smooth map from one manifold to another”.

1. Let M be a manifold, U ⊂ M a nonempty open set. Show that an atlas on M
naturally gives rise to an atlas on U of the same dimension, hence that U inherits a
manifold structure (making U a codimension-zero submanifold of M).

2. Real and complex projective spaces. If V is a vector space over a field F, the
projectivization P (V ) is defined (as a set) to be the set of one-dimensional vector
subspaces of V (“lines through the origin in V ”). Alternatively, P (V ) = (V \{0})/ ∼,
where the equivalence relation ∼ is defined by v ∼ w =⇐⇒ v = tw for some t ∈ F.

Let n ≥ 0 and let V = Fn+1, where F is either R or C. Let π : V → P (V ) be the
quotient map, and denote π(v) by [v] whenever convenient. For 0 ≤ j ≤ n define

Ũj =
{

(x0, . . . , xn) ∈ Fn+1 | xj 6= 0
}
⊂ V,

Uj = π(Ũj) ⊂ P (V ).

Clearly {Ũj}nj=0 covers V \ {0}, so {Uj}nj=0 covers P (V ). In view of the equivalence

relation defining P (V ), the maps φ̃j : Ũj → Fn defined by

φ̃j(x
0, . . . , xn) =

(
x0

xj
, . . . ,

xj−1

xj
,
xj+1

xj
, . . . ,

xn

xj

)
(1.1)

induce well-defined maps φj : Uj → Fn,

φj([v]) = φ̃j(v).

(In (1.1), it is understood that “x0

xj ” is omitted if j = 0 and that “xn

xj ” is omitted if
j = n. Alternative notation for the right-hand side is

(
x0

xj
, . . . ,

x̂j

xj
, . . . ,

xn

xj
),
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where the “hat” denotes deletion of the term indexed by j.)

(a) Identify the sets φj(Uj) and φj(Ui

⋂
Uj) (i 6= j) explicitly, and compute the

overlap-maps φi ◦ φ−1j . (As always, in the overlap-map expression “φi ◦ φ−1j ”, it is
understood that “φj” is short-hand for “ φj|Ui∩Uj

”.)

(b) Real projective space. Show that {(Ui, φi)}ni=0 is a smooth, n-dimensional atlas
on RP n := P (Rn+1). Hence RP n, with the corresponding maximal atlas, is an
n-dimensional manifold.

Whenever anyone speaks of RP n as a manifold, it’s implicit that this is the smooth
structure.

(c) Complex projective space. Any real isomorphism from the two-dimensional
real vector space C to R2, such as z 7→ (Re(z), Im(z)), induces a real isomorphism
Cn → R2n for n ≥ 1. By composing the chart-maps φj with such an isomorphism,
we obtain maps Uj → R2n. To avoid notational clutter, in this problem we will abuse
notation slightly, allowing “φj” to stand both for our previously-defined Uj → Cn

and for the corresponding map Uj → R2n.
Show that {(Ui, φi)}ni=0 is a smooth, 2n-dimensional atlas on CP n := P (Cn+1).

In the formula for φi ◦ φ−1j , you may treat n-tuples of complex numbers as elements
of R2n wherever necessary. Hence CP n, with the corresponding maximal atlas, is a
2n-dimensional manifold.

Whenever anyone speaks of CP n as a manifold, it’s implicit that this is the smooth
structure.

Remark. There is such a thing as a complex manifold, and as you might con-
jecture, CP n is a complex n-dimensional manifold. However, the concept is subtler
than you might think, and for us, “manifold” will always mean “real manifold” unless
otherwise specified.

(d) For V = Rn+1 and V = Cn+1, show that the topology on P (V ) induced by the
atlases in parts (b) and (c) is the same as the quotient topology. (In case you need
to review the meaning of quotient topology, it’s in the handout “Point-Set Topology:
Glossary and Review” on the class home page.)

(e) Show that CP 1 is diffeomorphic to S2 by explicitly exhibiting a diffeomorphism
F : CP 1 → S2 that maps U0 to S2 \ {north pole}, and maps U1 to S2 \ {south pole}.

Remark. CP 1 is also called the Riemann sphere. As a set, CP 1 = U0

∐
{[(0, 1)]}

(“
∐

” means “disjoint union”). In the Riemann sphere, our set U0 is implicitly
identified with φ0(U0) = C, and the point [(0, 1)] is regarded as “the point at infinity”.
If you did part (a) correctly, you should find that both overlap maps are given by
z 7→ 1

z
, with domain C \ {0}.

(f) Show that the quotient map (or projection) π : V \ {0} → P (V ) is a smooth
map of manifolds in the cases V = Rn+1 and V = Cn+1.

3. The Grassmannian or Grassmann manifold Gk(Rn) (0 < k < n) is a manifold
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whose underlying set is the set of k-dimensional subspaces of Rn. (This is a gen-
eralization of real projective space; G1(R

n) = P (Rn) = RP n−1. Notations for the
Grassmannian vary in the literature: some people use the notation “Gk(Rn)” for the
set of subspaces of Rn of codimension k. The notations Gk,n and Gn,k are also used.)

To define a natural atlas on Gk(Rn), it is convenient to generalize our definition
of “N -dimensional chart” to allow charts with values in a fixed N -dimensional vector
space V that we do not require to be (literally) RN . For any such V , we can fix an
isomorphism ι : V → RN , and compose any V -valued chart-map with ι to obtain an
RN -valued chart-map. If f : (open set in V )→ (open set in V ) is an overlap map for
a pair of V -valued chart-maps, then the overlap map for the corresponding RN -valued
chart-maps is ι ◦ f ◦ ι−1, which is exactly as (continuously) differentiable as is f . In
particular, an atlas of V -valued charts is smooth if and only if such a corresponding
atlas of RN -valued charts is smooth. Thus, allowing V -valued charts does not change
the collection of objects we call smooth N -dimensional manifolds.

With this in mind, the “standard” smooth atlas on Gk(Rn) is constructed as
follows. Endow Rn with the standard inner product. Observe that given any k-
plane X through the origin, any sufficiently close k-plane Y through the origin is the
“orthogonal graph” of a unique linear map T : X → X⊥, where X⊥ is the orthogonal
complement of X. (“Sufficiently close” means that Y

⋂
X⊥ = {0}. “Orthogonal

graph of T” means {v + T (v) | v ∈ X}. Since Rn = X ⊕ X⊥, there is a natural
bijection between Rn and X × X⊥. Composing appropriately with this bijection
identifies the orthogonal graph of T with the “true” graph of T .) For each k-element
subset I = {i1, i2, . . . , ik} of {1, 2, . . . , n}, let XI be the subspace consisting of all
x ∈ Rn all of whose coordinates other than those in positions i1, . . . , ik vanish. Let
VI ⊂ Rn be the (set-theoretic) complement of X⊥I in Rn.

(a) Let I = {(i1, i2, . . . , ik) ∈ Nk : 1 ≤ i1 < i2 < · · · < ik ≤ n}. Show that
{VI}I∈I is an open cover of Rn \ {0} and determines a cover {UI} of Gk(Rn), that,
for k = 1, reduces to the cover used in problem 2b (modulo replacing Rn+1 with Rn).

(b) Show that there is a natural bijection from UI to Hom(XI , X
⊥
I ), a space

naturally isomorphic to M(n−k)×k(R) (the space of (n− k)× k real matrices). Hence
there is a natural bijection φI : UI →M(n−k)×k(R).

(c) Show that the overlap maps φJ ◦φ−1I are smooth (this requires quite a bit more
work for general k than did the k = 1 case in problem 2), and hence that Gk(Rn) is
a smooth manifold of dimension k(n− k).

4. Covering spaces. A covering space of topological space X is a pair (X̃, π), where

X̃ is a topological space and π : X̃ → X is a continuous surjective map with the
following property: for each p ∈ X, there is an open neighborhood U of p that is
evenly covered, meaning that π−1(U) is a union of disjoint open sets in X̃, each of
which is mapped homeomorphically by π to U . (Surjectivity is automatic if “union”
is replaced by “non-empty union”.) The map π is called the projection or the covering
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map.

Below, assume that M,N are manifolds and that (M̃, π), (Ñ , π′) are covering
spaces of M,N respectively.

(a) Let m = dim(M). Show that an atlas on M gives rise to an m-dimensional

atlas on M̃ , hence that M̃ naturally inherits the structure of a smooth m-dimensional
manifold. (For this reason we usually refer to M̃ or (M̃, π) as a covering manifold of
M , rather than just a covering space.)

(b) Definition. Let X, Y be manifolds. A map F : X → Y is a local diffeomor-
phism if F is an open map and every p ∈ X has an open neighborhood U with the
property that F |U : U → F (U) is a diffeomorphism. Here, F (U) is an open set since
the map F is open, and naturally carries a manifold structure by problem 1. (In part
(f) of this problem, we will see that this definition is equivalent to a briefer, more
standard, but less self-explanatory one.)

Show that the natural smooth structure (equivalently, maximal atlas) on M̃ in
part (a) is the unique smooth structure for which π is a local diffeomorphism.

(c) Suppose that M̃ is a manifold of dimension m. Assume that for any two open

sets Ũ1, Ũ2 ⊂ M̃ for which π|Ũi
is injective and for which π(Ũ1) = π(Ũ2), the map

(π|Ũ2
)−1 ◦ π|Ũ1

is smooth. (Hence all such maps are diffeomorphisms.) Show that M
naturally inherits the structure of a smooth m-dimensional manifold.

(d) Let F : M → N be a continuous map, and let F̃ be a continuous map from

M̃ to N , from M → Ñ , or from M̃ to Ñ . If the corresponding diagram in Figure 1
commutes, we call F̃ a lift of F . (Figure 1 is somewhere nearby, wherever LaTeX felt
like putting it.) Show that for lifts of all three types, cases, if F̃ is a lift of F , then F̃
is smooth if and only if F is smooth.

M̃

F̃

M

π

?

F
- N

-

Ñ

F̃

M
F

-

-

N

π′

?

M̃
F̃

- Ñ

M

π

?

F
- N

π′

?

Figure 1: Diagrams for problem 4

Note: Given only F : M → N , a unique lift F̃ : M̃ → N always exists, namely
F̃ := F ◦ π : M → N . The other two types of lifts do not always exist, and when
they exist, they may not be unique. Given only F̃ (of any of the three types indicated
with this notation above), we say that F̃ descends to a map M → N if there exists
F : M → N of which F̃ is a lift. A map F̃ : M → Ñ descends uniquely to the map
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F := π′ ◦ F̃ ; in the other two cases, F̃ does not always descend, but when it does
descend, the map to which it descends is unique.

(e) For smooth maps between manifolds X and Y , the customary definition of
local diffeomorphism is: a smooth map F : X → Y is a local diffeomorphism if, for
every p ∈ X, the derivative F∗p : TpX → TF (p)Y is an isomorphism. Show that this
definition is equivalent to the one in part (b).
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