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1 Differentiability

Throughout sections 1–8 of these notes V and W are finite-dimensional vector spaces, of
dimension at least 1 (unless stated otherwise), with zero-elements 0V and 0W respectively,
and with norms ∥ ∥V and ∥ ∥W respectively. The subscripts on the zero-elements and
norms will often be dropped when context makes clear which zero-element (that of V , W ,
or R) or norm is intended.

The only reasons we exclude dimension zero by default are that (1) the limit in
equation (1.1) below would not be defined if dim(V ) = 0, and (2) we don’t want to have
to say “assume dim(V ) > 0” or “assume dim(W ) > 0 whenever we want to introduce
bases for these vector spaces. However, in the interests of thoroughness, we will sometimes
make remarks for the zero-dimensional cases.

Definition 1.1 Let U ⊂ V be an open set, let F : U → W, and let p ∈ U . We say F is
differentiable at p if F has a good linear approximation near p, i.e. if there exists a linear
transformation T : V → W such that

lim
v→0V

∥F (p+ v)− F (p)− T (v)∥W
∥v∥V

= 0; (1.1)

equivalently, if for all ϵ > 0 there exists δ > 0 such that if v ∈ V and ∥v∥ < δ, then
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∥F (p+ v)− F (p)− T (v)∥W ≤ ϵ∥v∥V . (1.2)

We say that F is differentiable if F is differentiable at every point of U . ▲
More generally, if U ′ ⊂ W is an open set, we define differentiability of F : U → U ′

(at a point or globally) the same way.

Note that (1.1) is equivalent to

lim
v→0V

F (p+ v)− F (p)− T (v)
∥v∥V

= 0W . (1.3)

Remark 1.2 The good linear approximation referred to in Definition 1.1 is the function
F̃ : q 7→ F (p)+T (q−p). This function is not linear in the sense of “linear transformation”,
but in the sense of “polynomial of degree at most 1”: if we choose bases for V and W ,
then the component functions of F̃ (relative to the chosen basis of W ) are polynomials of
degree at most 1 in the coordinate functions of V (relative to the chosen basis of V ). This
is the only instance in these notes in which “linear function” will mean anything other
than what “linear map” or “linear transformation” means in linear algebra. ▲

Claim 1.3 Let U, F, p be as in Definition 1.1. Then there exists at most one linear
transformation T : V → W such that (1.1) holds. In particular, if F is differentiable at
p then the linear transformation T in equation (1.1) is unique.

Proof: If linear transformations T1 and T2 are such that (1.1) holds, then for all v ∈ V

(T2 − T1)(v) = [F (p+ v)− F (p)− T1(v)]− [F (p+ v)− F (p)− T2(v)] .

Therefore, for all nonzero v ∈ V ,

F (p+ v)− F (p)− T1(v)
∥v∥

− F (p+ v)− F (p)− T2(v)
∥v∥

=
(T2 − T1)(v)
∥v∥

= (T2−T1)
(

v

∥v∥

)
,

since the linearity of T1 and T2 implies that T2−T1 is linear as well. Letting v → 0, using
the hypothesis that (1.3) is satisfied both with T = T1 and with T = T2, we deduce that

0W = lim
v→0

(T2 − T1)
(

v

∥v∥

)
.

Hence, by the “Substitution Lemma for limits”, for every unit vector e ∈ V we have

0 = lim
t→0+

(T2 − T1)
(

te

∥te∥

)
= (T2 − T1)(e).

Since every v ∈ V is a multiple of some unit vector, linearity implies that (T2−T1)(v) = 0
for all v ∈ V , hence that T2 = T1.
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Remark 1.4 The limit-statement (1.1) is equivalent to (1.2) because we have assumed
dim(V ) > 0. If dim(V ) = 0 then (1.1) does not make sense, but (1.2) still does. Thus
we could incorporate the case dim(V ) = 0 into Definition 1.1 by simply getting rid of
equation (1.1), and using only the formulation involving (1.2) instead. The upshot is that
if dim(V ) = 0 or dim(W ) = 0, then all maps from f : V → W are differentiable, with
Df |p : V → W being the zero linear transformation for all p ∈ V . Whenever dim(V ) = 0
or dim(W ) = 0, the zero linear transformation V → W is the unique linear transformation
from V to W , so the uniqeness asserted in Claim 1.3 holds in these cases as well.

Definition 1.5 Suppose V,W,U, F and p are as in Definition 1.1. Assume F is differen-
tiable at p. Then unique linear map T : V → W satisfying (1.1) is called the derivative
of F at p, denoted (DF )p or DF |p in these notes .

If dim(V ) = 0 or dim(W ) = 0, then for all p ∈ V we define (DF )p to be the zero
linear transformation from V to W . The condition involving (1.2) in Definition 1.1 holds
with T = DF |p = 0 in these cases.

▲

Claim 1.6 Let V = W = R, and let all other notation be as in Definition 1.1. Then
F is differentiable at p (as defined in Definition 1.1) if and only if F ′(p) (as defined in
Calculus 1) exists, and that in the differentiable case, the derivative DF |p is the linear
map “multiplication by F ′(p)” from R to R.

Proof: Exercise.

Remark 1.7 (Different meaning of “derivative”) As Claim 1.6 shows, the deriva-
tive of F at p, as defined above, does not reduce to the “Calc 1 derivative” in the case
V = W = R. The latter is a number F ′(p), not a linear transformation. However, there
is a natural one-to-one correspondence between real numbers and linear transformations
R→ R:

R ←→ Hom(R,R),

c ←→ the linear map x 7→ cx,

i.e. the map “multiplication by c”. Thus, when V = W = R, either of DF |p and F ′(p)
can be recovered from the other. Because Definition 1.5 does not reduce to the familiar
meaning of “derivative” in the case V = W = R, some authors prefer to call the linear
transformation T in (1.1) the differential of F at p. ▲

Convention and notation for natural numbers. In these notes we use the
convention that “the natural numbers start at 1;” i.e. that “natural number” means
(strictly) positive integer. We let N denote the set of natural numbers.
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Remark 1.8 Recall that for any fixed n ∈ N, all norms on Rn are equivalent. It follows
from this that the property of “differentiability at p” and (in the differentiable case) the
linear transformation DF |p are independent of which norms are used on V and W . ▲

Example 1.9 If F : V → W is a linear map then at each point p ∈ U , DF
∣∣
p
= F

(“a linear map is its own derivative [at each point]”). This follows from the uniqueness
statement in Claim 1.3 and the fact if F is linear, then for all nonzero v ∈ V we have

F (p+ v)− F (p)− F (v)
∥v∥

= 0.

▲

Exercise 1.10 Let U ⊂ V be open, let p ∈ U , and let F1, F2, . . . Fk : U → W be functions
that are differentiable at p. Let F = F1 + F2 + · · ·+ Fk. Show that F is differentiable at
p, and that DF |p = DF1|p +DF2|p + · · ·+DFk|p .

Exercise 1.11 Suppose U1 ⊂ U ⊂ V , where both U1 and U are open, let p ∈ U1 and
suppose F : U → V is differentiable at p. Then F |U1 (the restriction of F to the domain
U1) is differentiable at p, and D(F |U1)|p = DF |p .

Definition 1.12 (a) Let Hom(V,W ) denote the space of linear maps V → W (a vector
space of dimension (dimV )(dimW )). For T ∈ Hom(V,W ), the operator norm of T ,
denoted ∥T∥op, is defined by

∥T∥op = sup
{v∈V : ∥v∥V =1}

∥T (v)∥W . (1.4)

Note that the value of ∥T∥op may depend on the norms chosen on V andW . Notation
such as “∥T∥(∥ ∥

V
,∥ ∥

W
)

op
” would be more precise, but for reasons that should be all too

apparent, we avoid using it.

Recall that every (a) linear transformation from one finite-dimensional normed vector
space to another is continuous, (b) in any finite-dimensional normed vector space V , the
unit sphere S(V ) := {v ∈ V : ∥v∥ = 1} is compact, and (c) any restriction of a continuous
function is continuous. Thus, in the setting of (1.4), the function S(V ) → R defined by
v 7→ ∥T (v)∥ is continuous (a composition of continuous functions), so the compactness of
S(V ) implies that this function achieves a maximum value. Thus the supremum in (1.4)
is finite (and is actually achieved; “sup” could be replaced by “max”).

Claim 1.13 (a) As the name and notation suggest, the operator norm is indeed a norm
on the vector space Hom(V,W ).

(b) Let T ∈ Hom(V,W ). Then ∥T∥op = sup{v∈V : v ̸=0}

∥∥∥T (
v

∥v∥

)∥∥∥, and for all v ∈ V we

have
∥T (v)∥ ≤ ∥T∥op ∥v∥. (1.5)
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(c) Let (Z, ∥ ∥Z) be a third finite-dimensional normed vector space. Then the corre-
sponding operator norms on Hom(V,W ),Hom(W,Z) and Hom(V, Z) are related in
the following “sub-multiplicative” way:

∥S ◦ T∥op ≤ ∥S∥op ∥T∥op for all T ∈ Hom(V,W ), S ∈ Hom(W,Z). (1.6)

Proof: Exercise.

Proposition 1.14 (Differentiability implies continuity) Notation as in Definition
1.1. If F is differentiable at p, then F is continuous at p.

Proof: Assume F is differentiable at p, and let T = DF |p. Let δ > 0 be such that for all
v ∈ Bδ(0V ) we have ∥F (p+ v)−F (p)−T (v)∥ ≤ ∥v∥; such δ exists by Definitions 1.1 and
1.5. Then for all q ∈ Bδ(p), writing v = q − p we have ∥v∥ < δ, so

∥F (q)− F (p)∥ = ∥F (p+ v)− F (p)∥ ≤ ∥F (p+ v)− F (p)− T (v)∥+ ∥T (v)∥
≤ ∥v∥+ ∥T∥op∥v∥
= (1 + ∥T∥op)∥q − p∥.

Thus F is Lipschitz at p, hence continuous at p.

Remark 1.15 In Definition 1.1, the condition that V be finite-dimensional can be re-
laxed, at the cost of requiring that the linear transformation T be bounded (in the sense
of linear transformations; see the handout “Some facts about normed vector spaces”). If
dim(V ) is finite then every linear transformation from V to W is bounded,
regardless of whether dim(W ) is finite. Conversely, if dim(V ) = ∞ then there always
exist unbounded linear transformations from V to W (unless dim(W ) = 0, which we’re
continuing to assume is not the case).

With “linear transformation” replaced by “bounded linear transformation” in
Definition 1.1, the proof of Proposition 1.14 carries through verbatim to the case in which
dim(V ) =∞.1 ▲

1The dimension of an infinite-dimensional vector space is some infinite cardinality, of which there are
infinitely many. We are using notation such as “dim(V ) = ∞” and “dim(V ) < ∞” informally (without
“∞” having a specific meaning), just as convenient abbreviations for “V is infinite-dimensional” and “V
is finite-dimensional.”
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2 Chain Rule Theorem

We now add a third finite-dimensional normed vector space (Z, ∥ ∥Z) to the picture so
that we can talk about compositions of differentiable functions, and state and prove the
Chain Rule Theorem for functions between (subsets of) finite-dimensional vector spaces.

There are several ways of stating the Chain Rule. One way is better than all the
others:

The derivative of a composition is the composition of the derivatives.

Some precision is sacrificed in this statement in order to emphasize the elegance and
simplicity of the principle. The precise statement is equation (2.1) in the Chain Rule
Theorem below.

Theorem 2.1 (Chain Rule Theorem) Let V,W,Z be finite-dimensional vector spaces.
Let U1 ⊂ V, U2 ⊂ W be open sets, let F : U1 → U2, G : U2 → Z be functions, and let
p ∈ U1. Assume that F is differentiable at p and that G is differentiable at F (p). Then
the composition G ◦ F is differentiable at p, and

D(G ◦ F )
∣∣
p
= Dg

∣∣
F (p)
◦DF

∣∣
p
. (2.1)

Remark 2.2 The idea behind the proof below is the portion from (2.8) through (2.9):
starting with an arbitrary v, and writing “F (p + v) − F (p)” in place of w, we start
with the left-hand side of (2.8) and use the triangle inequality and the linearity of S
to attain (2.9). Then we work backwards to see what δ’s are needed in order to get
from (2.9) to get “(constant × ϵ)∥v∥” in (2.10). No cleverness or cooked-up functions
are involved (as in most textbook-proofs of Theorem 2.1, for V = W = Z = R or for
V = Rn,W = Rm, Z = Rk); the strategy is completely natural. It is the more advanced
concept of differentiability that makes this strategy so easy to find; armed with Definitions
1.1 and 1.5, and Definition 1.12 (of which the inequality (1.5) is a simple corollary), this
strategy is the first thing we think of. This same natural proof works perfectly well when
restricted to the case V = W = Z = R.

Furthermore, if we remove the finite-dimensionality assumption on V and W , and
modify Definition 1.1 by inserting the word “bounded” accordingly (see Remark 1.15),
then our proof of the Chain Rule still works, word for word.

Proof of Theorem 2.1. Let T = DF
∣∣
p
, q = F (p), and S = DG

∣∣
q
. Let ϵ > 0. Let

δ1, δ2 > 0 be such that for all w ∈ W and v ∈ V ,

if ∥w∥ < δ1 then q + w ∈ U2 and ∥G(q + w)−G(q)− S(w)∥ ≤ ϵ∥w∥ (2.2)

and

if ∥v∥ < δ2 then p+ v ∈ U1 and ∥F (p+ v)− F (p)− T (v)∥ ≤ min{ϵ, 1}∥v∥; (2.3)
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such δ1 and δ2 exist by Definitions 1.1 and 1.5.
Let δ3 = min{δ2, δ1

1+∥T∥op}, and let v ∈ V be any element with ∥v∥ < δ3. Then

∥v∥ < δ2, so by (2.3),
∥F (p+ v)− F (p)− T (v)∥ ≤ ϵ∥v∥ (2.4)

and, by the same argument as in the proof of Proposition 1.14,

∥F (p+ v)− F (p)∥ ≤ (1 + ∥T∥op)∥v∥ (2.5)

< (1 + ∥T∥op)δ3 ≤ δ1. (2.6)

Let w = F (p+v)−F (p); thus F (p+v) = F (p)+w = q+w. From (2.6) we have ∥w∥ < δ1,
so, by (2.2) and (2.5),

∥G(q + w)−G(q)− S(w)∥ ≤ ϵ∥w∥ ≤ ϵ(1 + ∥T∥op)∥v∥. (2.7)

Using (2.7), (2.4), and the linearity of S, we therefore have

∥(G ◦ F )(p+ v)− (G ◦ F )(p)− (S ◦ T )(v))∥ = ∥G(q + w)−G(q)− S(T (v))∥ (2.8)

≤ ∥G(q + w)−G(q)− S(w)∥+ ∥S(w)− S(T (v))∥
= ∥G(q + w)−G(q)− S(w)∥+ ∥S(w − T (v))∥
= ∥G(q + w)−G(q)− S(w)∥+ ∥S∥op ∥F (p+ v)− F (p)− T (v)∥ (2.9)

≤ ϵ(1 + ∥T∥op)∥v∥+ ∥S∥op ϵ∥v∥
= [(1 + ∥T∥op + ∥S∥op) ϵ]∥v∥. (2.10)

Since ϵ was arbitrary, it follows that G ◦ F is differentiable at p, with derivative S ◦ T .

3 Directional derivatives

Definition 3.1 Let U be an open subset of V , let p ∈ U and let F : U → W (with no
differentiability of F assumed). For v ∈ V , the (generalized) directional derivative of F
at p in direction v is

(DvF )(p) := (DvF )p :=
d

dt
F (p+ tv)

∣∣∣∣
t=0

:= lim
t→0

F (p+ tv)− F (p)
t

if this limit exists. Note that (DvF )(p), when it exists, is an element of W .▲

We have inserted “(generalized)” since, unlike in Calculus 3, there is no requirement
that v be a unit vector; v can even be the zero vector.
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Example 3.2 In Definition 3.1, consider the case V = Rn,W = R; thus F is a real-
valued function on an open set in Rn. Let {ej}nj=1 be the standard basis of Rn, and let

{xj}nj=1 be the standard coordinate functions on Rn. Then (DejF )(p) =
∂F
∂xj (p) (i.e. if one

side of this equation exists, then so does the other, and the two sides are equal). Thus,
partial derivatives are special cases of directional derivatives.

More generally, even if W is a general finite-dimensional vector space, it is common
to make the definition

∂F

∂xj
(p) := (DejF )(p) (3.1)

(a vector-valued partial derivative). As is easily checked, if W = Rm and {f i}mi=1 are the
component functions of of F with respect to the standard basis on Rm, then

∂F

∂xj
=


∂f1

∂xj

...
∂fm

∂xj

 . (3.2)

▲

Remark 3.3 Let F and p be given. Trivially, (D0V F )(p) = 0W , but the limit in Definition
3.1 may or may not exist for a given nonzero v, and may exist for some nonzero v’s but
not others. However, if v is a vector for which (DvF )(p) exists, then it is easily shown that
(DwF )pP ) exists for all multiples w of v, and that we have the following homogeneity
property:

(DλvF )(p) = λ(DvF )(p) for all λ ∈ R. (3.3)

▲

Proposition 3.4 If F is differentiable at p then all directional derivatives of F exist at
p and

(DvF )(p)︸ ︷︷ ︸
directional derivative of
F, at p, in direction v

= DF
∣∣
p
(v)︸ ︷︷ ︸

derivative of F at p,
applied to v

.

Proof: Suppose F is differentiable at p and let T = DF
∣∣
p
. Then if v ̸= 0,

lim
t→0

F (p+ tv)− F (p)
t

= lim
t→0


∥v∥ F (p+ tv)− F (p)− T (tv)

t∥v∥︸ ︷︷ ︸
→0 since F is differentiable at p

+ T (v)

 = T (v)
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Corollary 3.5 Let U ⊂ Rn be open, p ∈ U , let f : U → R be a function that is

differentiable at p, let {xj}nj=1 be the standard coordinates on Rn, and let v =

 v1

...
vn

 ∈
Rn. Then

Df |p(v) =
n∑

j=1

∂f

∂xj
(p) vj (3.4)

= (
∂f

∂x1
(p), . . . ,

∂f

∂xn
(p))︸ ︷︷ ︸

1× n matrix

 v1

...
vn


︸ ︷︷ ︸

n× 1 matrix

, (3.5)

where matrix multiplication is used on the right-hand side of (3.5), and 1 × 1 matrices
are identified with real numbers.

Proof: Let {ej}nj=1 be the standard basis of Rn. Then v =
∑n

j=1 v
jej. Using the linearity

of Df |p , Proposition 3.4, and Example 3.2, we therefore have

Df |p(v) =
n∑

j=1

vj Df |p(ej) =
n∑

j=1

vj (Dejf)(p) =
n∑

j=1

∂f

∂xj
(p) vj,

yielding (3.4).

Convention for the remainder of these notes. Whenever we introduce a function
with a phrase like “Let F : (U ⊂ V ) → W . . . ”, we assume that U is an open subset of
V unless we specify otherwise.

Exercise 3.6 Let W1,W2 be finite-dimensional vector spaces of positive dimension. Let
U ⊂ V be open, p ∈ U , and gi : U → Wi differentiable at p for i = 1, 2. Define
f : U → W1⊕W2 by f(q) = (g1(q), g2(q)). Show that f is differentiable at p and compute
Df |p(v) for arbitrary v ∈ V .

Note: one general approach to a problem of the form “show that a function F is dif-
ferentiable at point q, and compute the derivative DF |q” is to compute all the directional
derivatives (DvF )(q). If this expression is not linear in v, then F is not differentiable at
q (and you were instructed to show something that was false). If “(DvF )(q)” is linear in
v, then the linear transformation T defined by T (v) = (DvF )(q) is the only candidate for
DF |q. You can then try to show that F is differentiable at q either by plugging this T
into the definition of “differentiable at q” and showing that the relevant limit is zero, or
by showing that, for all fixed v, the map q̃ 7→ (DvF )(q) is continuous in q̃ (in which case,
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automatically, F is not merely differentiable at q, but continuously differentiable at q).
The former approach is the one to use in this problem, since nothing in the hypotheses
implies continuity of the directional derivatives. ▲

Remark 3.7 The difference between the direct sum W1⊕W2 and the Cartesian product
W1×W2 is that, in the convention I use, onlyW1⊕W2 is a vector space (whose underlying
point-set isW1×W2, and whose operations and zero element are defined componentwise).
We can speak of linear maps with domain W1 ⊕ W2, and bilinear maps with domain
W1 ×W2, but not vice-versa.

2 In the exercise above, we needed to use W1 ⊕W2 because
we have not defined “differentiable map” for a function whose codomain is not a vector
space (or subset of a vector space).

Exercise 3.8 Let n,m, k ∈ N. Define µ : Mm×n(R) ⊕ Mn×k(R) by µ(A,B) = AB
(matrix multiplication). Show that µ is differentiable, and compute its derivative.

Exercise 3.9 Let n,m, k ∈ N. Let U ⊂ V be open, let g : U → Mm×n(R) and h :
U → Mn×k(R) differentiable and define f : U → Mm×k(R) by f(p) = g(p)h(p). Note
that f = µ ◦ j, where µ is the map in Exercise 3.8 and ϕ : U → Mm×n(R) ⊕ Mn×k(R)
is defined by ϕ(p) = (g(p), h(p)), a map of the form in Exercise 3.6. Use the Chain Rule
Theorem to prove that f is differentiable, and (using directional derivatives) express the
derivative of f in terms of the derivatives of g and h.

If your answer is correct, then in the case n = m = k = 1, you should find with
the aid of Claim 1.6 that you’ve recovered the “product rule” from Calculus 1. Thus, the
Calculus-1 product rule is a corollary of the (multivariable) chain rule. Even though we
learn the product rule in Calc 1 before we learn the chain rule, the “fully understood”
chain rule (2.1) is more fundamental—but that’s not something that can be explained or
appreciated at the level of Calc 1.

2In areas of mathematics in which bilinear maps do not arise, it does little harm to adopt the convention
that “W1 ×W2” means W1 ⊕W2; this may be what you’re used to. But bilinear and other multilinear
maps are extremely important in differential geometry, so we need to maintain a notational distinction
between the Cartesian product of vector spaces and the direct sum.
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4 The case V = Rn,W = Rm

We now specialize to the concrete case V = Rn,W = Rm. For purposes of matrix
operations that will arise later, we treat elements of Rn and Rm as column vectors.
When this is inconvenient typographically, so we will write column vectors as transposes
of row vectors. If (a1, . . . , an)t is in the domain of a function f defined on a subset of Rn,

we write simply f(a1, . . . , an) rather than f((a1, . . . , an)t) or f


 a1

...
an


 .

Throughout this section, unless stated otherwise, {ei}ni=1 and {e′i}mi=1 denote the
standard bases of Rn and Rm, respectively, and {xi}ni=1 and {yi}mi=1 denote the standard
coordinate functions on Rn and Rm, respectively. For 1 ≤ i ≤ m, define ιi : R→ Rm by

ιi(s) = se′i = (0, . . . , 0, s, 0, . . . , 0)t,

where the s is in the ith slot.
Observe that each of the functions xi, yi, ιi defined above is a linear map.

Definition 4.1 Let U ⊂ Rn be open, and let F : U → Rm be a function. For each
i ∈ {1, . . . n} let f i = yi ◦ F : U → R (the ith component function of F [with respect to
the standard basis of Rm]). Then, as is easily checked,

F =
n∑

i=1

ιi ◦ f i . (4.1)

We may write (4.1) in the more familiar form

F =
m∑
j=1

f i e′i =

 f 1

...
fm

 ,

with the understanding that this means F (p) =
∑m

i=1 f
i(p) e′i for all p ∈ U . At any point

p for which all the partial derivatives ∂f i

∂xj (p) exist (1 ≤ i ≤ n, 1 ≤ j ≤ m), we define the

Jacobian matrix of F at p to be the matrix whose (ij)th entry is ∂f i

∂xj (p):

JF (p) =


∂f1

∂x1 (p)
∂f1

∂x2 (p) · · · ∂f1

∂xn (p)
∂f2

∂x1 (p)
∂f2

∂x2 (p) · · · ∂f2

∂xn (p)
...

...
. . .

...
∂fm

∂x1 (p)
∂fm

∂x2 (p) · · · ∂fm

∂xn (p)

 .
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Example 4.2 Consider the case n = 1 in Definition 4.1. If the component functions
f 1, . . . , fm of F are differentiable at t ∈ U , then

JF (t) =

 (f 1)′(t)
...

(fm)′(t)

 = lim
h→0

F (t+ h)− F (t)
h

=: F ′(t).

▲

Proposition 4.3 Let U, F, {f i}mi=1, and p be as in Definition 4.1. Then F is differentiable
at p if and only if each component function f i is differentiable at p, 1 ≤ i ≤ m. In the
differentiable case,

DF |p =
m∑
i=1

ιi ◦Df i|p ; (4.2)

equivalently,

DF |p(v) = JF (p)v for all v ∈ V, (4.3)

where matrix-multiplication is implicit on the right-hand side of this equation.

Thus, Proposition 4.3 yields the following important relation between derivatives and
Jacobians:

If F : (U ⊂ Rn)→ Rm is differentiable at p ∈ U , then the derivative of F at
p is the linear map Rn → Rm given by multiplication by the Jacobian matrix
JF (p).

Said another way,

If F : (U ⊂ Rn) → Rm is differentiable at p ∈ U , then the Jacobian matrix
JF (p) is the matrix of the linear transformation DF |p : Rn → Rm with respect
to the standard bases of Rn and Rm.

For the case n = m = 1, we have already seen this fact in Remark 1.7. In this case,
the Jacobian matrix JF (p) is a 1 × 1 matrix whose sole entry is F ′(p). The linear map
x 7→ F ′(p)x is exactly multiplication by this 1× 1 matrix. Thus, the “Calc 1” derivative
of a function F : (U ⊂ R)→ R at p is the 1× 1 Jacobian JF (p).

Proof of Proposition 4.3: First suppose that f i is differentiable at p, 1 ≤ i ≤ m. Let
i ∈ {1, . . . ,m}. Since ιi is linear, Example 1.9 implies that ιi is differentiable and that
Dιi|f i(p) = ιi. Hence, by the Chain Rule Theorem, ιi ◦ f i is differentiable at p, and

D(ιi ◦ f i)|p = Dιi|f i(p) ◦Df i|p = ιi ◦Df i|p. (4.4)

12



Since (4.4) holds for each i, and F =
∑

i ιi ◦ f i, Exercise 1.10 implies the equality (4.2).
Conversely, suppose that F is differentiable at p, and let i ∈ {1, . . . ,m}. Then

f i = yi ◦ F . Since yi is linear, the same Chain Rule argument as above shows that f i is
differentiable at p.

This establishes the “if and only if” statement in the Proposition, as well as the
equality (4.2) in the differentiable case. For the equivalence between (4.2) and (4.3)
(when DF |p exists), let v = (v1, . . . , vn)

t ∈ Rn. Then, by Corollary 3.5 (applied to the
component functions f i) and the definition of the maps ιi,

DF |p(v) =
m∑
i=1

ιi ◦Df i|p(v)

=


∑n

j=1
∂f1

∂xj (p) vj
...∑n

j=1
∂fm

∂xj (p) vj


= JF (p)v.

Since v was arbitrary, (4.2) and (4.3) are equivalent.

With notation and hypotheses as in Theorem 2.1, let us now revisit the Chain Rule
for the special case V = Rn, W = Rm, and Z = Rk. From Proposition 4.3, for all
w ∈ Rm and v ∈ Rn we have

Dg
∣∣
f(p)

(w) = Jg(f(p))︸ ︷︷ ︸
k×m

w︸︷︷︸
∈Rm

∈ Rk,

Df
∣∣
p
(v) = Jf (p)︸ ︷︷ ︸

m×n

v︸︷︷︸
∈Rn

∈ Rm,

and D(g ◦ f)
∣∣
p
(v) = Jg◦f (p)︸ ︷︷ ︸

k×n

v︸︷︷︸
∈Rn

∈ Rk.

Thus Theorem 2.1 implies

Jg◦f (p)︸ ︷︷ ︸
k×n

v = D(g◦f)
∣∣
p
(v) = Dg

∣∣
f(p)

(
Df

∣∣
p
(v)

)
= Jg(f(p))︸ ︷︷ ︸

k×m

Jf (p)︸ ︷︷ ︸
m×n

v︸︷︷︸
∈Rn

∈ Rk for all v ∈ Rn.

Therefore
Jg◦f (p) = Jg(f(p))Jf (p), (4.5)

i.e. “the Jacobian of a composition is the product of the Jacobians.” This is the second-
best statement of the Chain Rule.

13



Exercise 4.4 Check that (4.5) is exactly the chain rule you learned in Calculus 3, simply
written in matrix notation.

In case your memory needs refreshing, the chain rule you learned in Calculus 3 should
say the following, modulo notation (often abused in Calc 3): if {xi}ni=1, {yi}mi=1, and {zi}ki=1

denote the standard coordinates on Rn ⊇ domain(f), Rm ⊇ codomain(f) ⊆ domain(g),
and Rk ⊇ codomain(g) respectively, and we define h = g ◦ f , f i = yi ◦ f for 1 ≤ i ≤ m,
gi = zi ◦ g for 1 ≤ i ≤ k, and hi = zi ◦ h for 1 ≤ i ≤ k, then

∂hi

∂xj
(x) =

m∑
l=1

∂gi

∂yl
(f(x))

∂f l

∂xj
(x), 1 ≤ i ≤ k, 1 ≤ j ≤ n. (4.6)

(In equation (4.6) (i) some other Calc 3 notations for ∂hi

∂xj are “
∂zi

∂xj ” and the [literally wrong]

“ ∂gi

∂xj ”, (ii) some other Calc 3 notations for ∂gi

∂yl
(f(x)) are “∂gi

∂yl
(y(x))” and “∂zi

∂yl
(y(x))”, and

(iii) another Calc 3 notation for “ ∂f l

∂xj ” is ∂yl

∂xj .) Equivalently, in terms of vector-valued
partial derivatives,

∂h

∂xj
(x) =

m∑
l=1

∂g

∂yl
(f(x))

∂f l

∂xj
(x).

Exercise 4.5 Let I ⊂ R, U ⊂ Rm be open, let t0 ∈ I, q ∈ U , and suppose that
F : U → Rk is differentiable. Let v ∈ Rm, and suppose that γ : I → Rm is a differentiable
function for which γ(t0) = q and γ′(t0) = Jγ(t0) = v (see Example 4.2). Show that

d

dt
F (γ(t))

∣∣
t=t0

= JF (q)v = DF |q(v) = (DvF )(q).

Exercise 4.6 Revisit the second paragraph of Exercise 3.9, where you saw how to derive
the Calc-1 product rule from the general chain rule 2.1. Redo this derivation using using
equation (4.5) instead of Claim 1.6; the Jacobian matrices Jµ and Jϕ are, at each point,
matrices of size 1× 2 and 2× 1, respectively.

Remark 4.7 (Operator norm on matrices) For A ∈ Mm×n(R), define
LA : Rn → Rm by LA(v) = Av (where we view v as a column vector); i.e. LA is
the linear transformation Rn → Rm whose matrix with respect to the standard bases
is A. The map Mm×n(R) → Hom(Rn,Rm) defined by A 7→ LA is an isomorphism
Mm×n(R)→ Hom(Rn,Rm). We use this isomorphism to define operator norms of matri-
ces: given norms ∥ ∥, ∥ ∥′ on Rn,Rm, respectively, we define the corresponding operator-
norm function on Mm×n(R) by

∥A∥op := ∥LA∥op .
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(When m = n, it is implicit that we take ∥ ∥′ = ∥ ∥ unless otherwise specified.)

∥A∥op = sup{∥Av∥′ : ∥v∥ = 1} (from (1.4)), and

∥Av∥′ ≤ ∥A∥op ∥v∥ (from (1.5)).

Furthermore, given also a norm ∥·∥′′ onRk, the induced operator norms onMk×m(R),Mm×n(R),
and Mk×n(R) satisfy

∥AB∥op ≤ ∥A∥op ∥B∥op for all A ∈Mk×m(R), B ∈Mm×n(R) (from (1.6) ).

Exercise 4.8 For n ∈ N let GL(n,R) ⊂Mn×n(R) be the set of invertible n×n matrices.
For n > 1 and A ∈ GL(n,R) there is no general formula expressing ∥A−1∥op in terms of
∥A∥op; e.g. it is not generally true that ∥A−1∥op = 1/∥A∥op . For example, if A is the 2×2
diagonal matrix with diagonal entries 2 and 1/2, then for the operator norm determined
by the Euclidean norm on R2, we have ∥A∥op = ∥A−1∥op = 2.

But for any n, and any underlying norm on Rn, there still some useful general
inequalities involving ∥A−1∥op:

(a) Prove that ∥A−1∥op ≥ 1/∥A∥op. (Here and below, assume A ∈ GL(n,R).)

(b) Since the unit sphere in Rn is compact, and ∥ · ∥ : Rn → R is continuous,
and the map v 7→ Bv is continuous for any B ∈ Mn×n(R), the function v 7→ ∥Av∥
achieves a minimum value c. Since A is invertible, c must be strictly positive. Prove that
∥A−1∥op ≤ 1/c.

(c) Fix n ∈ N and let I be the n × n identity matrix. Let B ∈ Mn×n(R) be such
that ∥B∥op < 1. Prove that I +B is invertible and that ∥(I +B)−1∥op ≤ 1/(1− ∥B∥op).

5 Conditions for differentiability

If F is differentiable at p then, as we have seen,

1. The directional derivatives (DvF )(p) exist for all directions v.

2. For every v, the equality DF
∣∣
p
(v) = (DvF )(p) holds. Since DF

∣∣
p
is linear, the map

v 7→ (DvF )(p) must also be linear.

Thus, these are necessary conditions for F to be differentiable at p. As the next two
examples show, these conditions are not sufficient. In these examples, for notational
simplicity we write elements of R2 as row vectors.
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Example 5.1 Let f : R2 → R be the following function (any nonlinear function that is
homogeneous of degree 1 would do):

f(x, y) =

{
x3

x2+y2
if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0).

Since f(tx, ty) = tf(x, y) we have

(
D(0,0)f

)
((a, b)) = lim

t→0

f(t(a, b))− f((0, 0))
t

= f((a, b)) =
a3

a2 + b2
.

Thus, for every (a, b), the directional derivative of f at (0, 0) in the direction (a, b) exists.
However, the map (a, b) →

(
D(0,0)f

)
((a, b)) is is not linear, so f is not differentiable at

(0, 0). ▲

The next example shows that even if (DvF )(p) exists for all v and the map
v 7→ (DvF )(p) is linear, F need not be differentiable at p.

Example 5.2 Consider the function f : R2 → R given by

f(x, y) =

{
xy3

x2+y4
if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0).

For this f we have both

f
∣∣
x-axis

≡ 0 and f
∣∣
y-axis

≡ 0,

so ∂f
∂x
(0, 0) = 0 = ∂f

∂y
(0, 0). Moreover, for any (a, b) ̸= (0, 0),

f((0, 0) + t(a, b))− f(0, 0)
t

=
f(ta, tb)

t
=

1

t
· t4ab3

t2a2 + t4b4
=

tab3

a2 + t2b4
→ 0 as t→ 0.

Thus, all directional derivatives of f exist at (0, 0) and are zero (so, in particular, the map
v 7→ (D(0,0)f)(v) is linear). Therefore, if f were differentiable at (0, 0) the derivative of f at
(0, 0) would be the zero-map R2 → R. By the “Substitution Lemma for limits”, it would
then follow that if γ : R \ {0} → R2 \ {0} is any function for which limt→0 γ(t) = (0, 0)

(a curve approaching the origin as t → 0), we must have limt→0
f(γ(t))−f(0,0)

∥γ(t)∥ = 0. In

particular this would hold for γ(t) = (t2, t) = (x(t), y(t)) (approaching the origin along
the parabola x = y2). But for this curve γ, we have

lim
t→0

f(x(t), y(t))− f(0, 0)
∥(x(t), y(t))∥

= lim
t→0

t5/(2t4)√
t4 + t2

= lim
t→0

1

2
√
1 + t2

t

|t|
,

which does not exist. Hence f is not differentiable at (0, 0). ▲
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In view of the previous two examples, one may ask whether there are any simple
conditions on the directional derivatives of F that guarantee the existence of the derivative
of F at a given point? The answer is yes; one such result, stated only for the case
V = Rn,W = Rm, is Proposition 5.3 below. However, bear in mind that the result
gives just a sufficient conditions for differentiability at a point, not necessary condition.
Definition 1.1 cannot be simplified.

Proposition 5.3 Let U ⊂ Rn be open, F = (f 1, . . . , fm)t : U → Rm a function, and
p ∈ U . Let {xi}ni=1 be the standard coordinates on Rn. If each of the partial derivatives
∂f i

∂xj exists on some open neighborhood of p, and is continuous at p, then F is differentiable
at p.

Remark 5.4 The condition in Proposition 5.3 is the first condition (sufficient or neces-
sary) we’ve seen for “F is differentiability at p” that involves knowing differentiability of
something at points other than p. The fact that it involves any sort of differentiability
at points other than p should serve as a reminder that this condition is unlikely to be
necessary for differentiability at p. The function f : R→ R defined by

f(x) =

{
x2 sin(1/x), x ̸= 0,
0, x = 0,

is an example of a function R → R that is differentiable everywhere, but for which the
condition in Proposition 5.3 is not met at x = 0. ▲

Proof of Proposition 5.3: In view of Proposition 4.3, it suffices to prove Proposition
5.3 for the case m = 1. Thus, let f : U → R be a function such that for 1 ≤ j ≤ n, each
of the partial derivatives ∂f

∂xj exists on an open neighborhood of p, and is continuous at p.
Let {ej}nj=1 be the standard basis of Rn. Define a linear transformation T : Rn → R

by T (
∑n

j=1 vjej) =
∑n

j=1
∂f
∂xj (p)vj. Taking the norm on V = Rn to be the ℓ1-norm ∥ ∥1,

and the norm on W = R to be the standard norm on R, we will show that for all ϵ > 0
there exists δ > 0 such that for all v ∈ Rn with ∥v∥1 < δ, (1.3) is satisfied, and therefore
that f is differentiable at p. (As noted in Remark 1.8, the choices of norms on V and W
do not affect whether f is differentiable at p, so we are free to choose any norms we find
convenient.)

Let ϵ > 0. For each j ∈ {1, . . . , n} let Uj be an open neighborhood of p such
that for all q ∈ Uj, | ∂f∂xj (q) − ∂f

∂xj (p)| < ϵ. Let U ′ =
⋂

1≤j≤n Uj. Then U ′ is a finite
intersection of open neighborhoods of p, hence an open neighborhood of p. For r > 0
and q ∈ Rn, let B∞

r (q) denote the open ball of radius δ and center q in (Rn, d∞), where
d∞ is the ℓ∞-metric on Rn. Since all norms on Rn are equivalent, U ′ contains B∞

r (p)
for some r > 0, hence contains the closed ball B

∞
r (p) for any r ∈ (0, r1). Let δ > 0

be such that B
∞
δ (p) ⊂ U ′. By definition of the metric associated with a norm, we have

B
∞
δ (p) = {p+ v : v ∈ B ∞

δ (0)}.
Let {xj}nj=1 be the standard coordinates on Rn, and let v ∈ V . For 1 ≤ j ≤ n let

pj = xj(p), vj = xj(v). (Thus v = (v1, . . . , vn)t and |vj| < δ, 1 ≤ j ≤ n.) For 0 ≤ k ≤ n
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define q(k) = p +
∑k

j=1 v
jej, the point whose first k coordinates are those of p + v and

whose last n− k coordinates are those of p. Then

f(p+ v)− f(p) = f(q(n))− f(q(0))
= [f(q(n))− f(q(n−1))] + [f(q(n−1))− f(q(n−2))] + · · ·+ [f(q(1))− f(q(0))].

(5.1)

(Essentially, (5.1), read from the last bracketed expression to the first, says, “Walk from
the ‘corner’ p of a ‘cube’ to the opposite ‘corner’ p + v by walking first along an edge
parallel to the 1st coordinate axis, then along an edge parallel to the 2nd coordinate axis,
etc.”) Let k ∈ {1, . . . , n}. Observe that q(k) = q(k−1) + vkek. For t ∈ [−δ, δ], the point
z(k)(t) := q(k−1) + tek lies in B

∞
δ (p), on which ∂f

∂xk exists and is continuous. But

d

dt
f(z(k)(t)) =

∂f

∂xk
(z(k)(t)),

so the function t 7→ f(z(k)(t)) is differentiable on an open interval that contains the closed
interval with endpoints 0 and vk. Hence we may apply the Mean Value Theorem and
select ck between 0 and vk such that

f(q(k))− f(q(k−1)) = f(z(k)(vk))− f(z(k)(0)) = ∂f

∂xk
(z(k)(ck))v

k. (5.2)

Define q̃(k) = z(k)(ck). Note that q̃
(k) lies in the ball B∞

δ (p) ⊂ U ′, so | ∂f
∂xj (q̃

(k))− ∂f
∂xj (p)| < ϵ.

Writing q̃(k) = z(k)(ck) for each k, plugging (5.2) into (5.1), and using the definition
of T , we have

|f(p+ v)− f(v)− T (v)| =

∣∣∣∣∣
n∑

k=1

∂f

∂xk
(q̃(k)) vk −

n∑
j=1

∂f

∂xj
(p) vj

∣∣∣∣∣
=

∣∣∣∣∣
n∑

j=1

(
∂f

∂xj
(q̃(j))− ∂f

∂xj
(p)

)
vj

∣∣∣∣∣
≤

n∑
j=1

∣∣∣∣ ∂f∂xj (q̃(j))− ∂f

∂xj
(p)

∣∣∣∣ |vj|
≤

n∑
j=1

ϵ|vj|

= ϵ∥v∥1.

Thus for all v ∈ Rn with ∥v∥1 < δ, we have |f(p+ v)− f(v)− T (v)| ≤ ϵ∥v∥1. Since
ϵ was arbitrary, it follows that f is differentiable at p.
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Corollary 5.5 Let U ⊂ Rn be open, F : U → Rm a function, and p ∈ U . Suppose there
is an open neighborhood of U ′ of p such that for all v ∈ Rn, the directional derivative
(DvF )(q) exists for every q ∈ U ′, and the map q 7→ (DvF )(q) is continuous. Then F is
differentiable at p.

Exercise 5.6 (a) Prove Corollary 5.5.
(b) Strengthen Corollary 5.5 by showing that Rn,Rm can be replaced by arbitrary

finite-dimensional vector spaces. I.e., prove the following corollary:

Corollary 5.7 Let V,W be finite-dimensional vector spaces, U ⊂ Rn open, F : U → Rm

a function, and p ∈ U . Suppose there is an open neighborhood of U ′ of p such that
for all v ∈ V , the directional derivative (DvF )(q) exists for every q ∈ U ′, and the map
q 7→ (DvF )(q) is continuous. Then F is differentiable at p.

Remark 5.8 Proposition 5.3 is stronger than Corollary 5.5; the Proposition shows that
we can deduce differentiability at p from knowing the continuity at p of just all the first
partials, of which there are only finitely many, whereas there are infinitely many directional
derivatives. However, when V andW are not explicitlyRn andRm, there are no “standard
coordinates”, so the partials used in the Proposition do not make sense. We can always
introduce bases for V and W (equivalently, introduce isomorphisms V → Rdim(V ) and
W → Rdim(W )). A basis of V determines coordinate-functions on V , while a basis of W
determines component-functions {f i} of the map F , so choices of bases allow us to define
partial derivatives of component-functions with respect to coordinates on V . However,
there are instances in which it is very easy to compute all directional derivatives, and
show that they are continuous; introducing bases and computing partial derivatives of
component functions simply becomes extra work. In these instances, Corollary 5.7 can be
much more useful than Proposition 5.3. The exercise below illustrates one such instance.
▲

Exercise 5.9 Let V = W = Mn×n(R), the space of n × n matrice with real extrieds.
Define F : V → V by F (A) = A2 := AA. (For any square matrix A and positive integer
k, we define Ak = AA . . . A, the product of k copies of A.) (a) Compute (DBF )(A) for
all A,B ∈Mn×n. (b) Show that for each B ∈ V , the map A 7→ (DBF )(A) is continuous.
(Hence F is differentiable.)

Note: This exercise illustrates one method for showing differentiability, but for this
particular function it’s not necessarily the fastest or easiest method. Differentiability of
F can also be proven quickly by (i) using an obvious basis for Mn×n(R) (see Exercise
6.4) to yield an isomorphism Mn×n(R) → Rn2

, (ii) using the fact the entries of A2 are
polynomials in the entries of A, and (iii) proving that for any m ∈ N, every polynomial
in the standard coordinate functions is differentiable. But this approach wouldn’t give
you nice simple formulas for the derivative or directional derivatives of F .

Exercise 5.10 (derivative of the matrix-inversion map) For n ∈ N, we define
GL(n,R) ⊂Mn×n(R) to be the set of invertible n×n (real) matrices. Let ι : (GL(n,R) ⊂
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Mn×n(R)) → Mn×n(R) be the matrix-inversion map: ι(A) = A−1. (Obviously the image

of ι is GL(n,R) itself; we’ve written the codomain as the larger set Mn×n(R) so that we have a

function of the form “F : (U ⊂ V )→W ,” where V and W are finite-dimensional vector spaces.)

(a) Show, the following two ways, that GL(n,R) is an open subset of Mn×n(R), and
that ι : GL(n,R)→Mn×n(R) is continuous.

(i) Use the fact that, from the standard formula for the inverse of A ∈ GL(n,R),
(essentially “Cramer’s Rule”), the entries of A−1 are rational functions of the entries
of A, with nonzero denominator.

(ii) Use the identity

B−1 − A−1 = A−1(A−B)B−1 (for A,B ∈ GL(n,R)) (5.3)

to show continuity of ι at a fixed, arbitrary A ∈ GL(n,R), as follows:

– First use (5.3) to bound ∥B−1 − A−1∥op in terms of ∥A−1∥op, ∥B−1∥op , and
∥B − A∥op. (Note: For n > 1, there is no formula relating ∥A−1∥op to ∥A∥op; e.g.
it is not generally true that ∥A−1∥op = 1/∥A∥op ; see Exercise 4.8).

– Feed this upper bound on ∥B−1 − A−1∥op into the triangle inequality
∥B−1∥op ≤ ∥B−1−A−1∥op + ∥A−1∥op to derive an upper bound on ∥B−1∥op in
terms of ∥A−1∥op and ∥B −A∥op (for ∥B −A∥op sufficiently small, as determined

by A).

– Then feed that bound on ∥B−1∥op back into your original bound on
∥B−1−A−1∥op to obtain an upper bound on ∥B−1−A−1∥op in terms of ∥A−1∥op
and ∥B−A∥op alone (again for ∥B−A∥op sufficiently small, as determined by A).

This final bound should show that ∥B−1 − A−1∥op → 0 as ∥B − A∥op → 0.

(b) Suppose B ∈Mn×n(R) with ∥B∥op < 1. Let I be the n× n identity matrix.

(i) Show that the series
∑∞

n=0B
n converges in norm, and hence converges. (Σ-notation-

convention for power series in an n× n matrix B is that “B0” means I.)

(ii) Show that (I−B)
∑∞

n=0B
n = I. Hence I−B is invertible and (I−B)−1 =

∑∞
n=0B

n.

(iii) Use part (ii) to obtain a second proof of the inequality established in Exercise 4.8(c).

(iv) Show that the (matrix-valued) power seres
∑∞

n=0(−1)ntnBn in the real variable t
has radius of convergence at least 1/∥B∥op, where we interpret “1/∥B∥op” as ∞ if
B = 0. Hence on the open interval (1/∥B∥op, 1/∥B∥op), the term-by-term derivative
of

∑∞
n=0(−1)ntnBn converges to d

dt
(I + tB). In particular, this holds at t = 0, so

the directional derivatives of ι at I exist and satisfy (DBι)I = −B.
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(c) Let A ∈ GL(n,R). For any C ∈ Mn×n(R), the left-translation map LC :
Mn×n(R) → Mn×n(R) defined by LC(X) = CX, is linear, hence continuous. Use
this fact, together with part (b) and the identity (A + B)−1 = A−1(I + BA−1)−1 =
LA−1 ((I +BA−1)−1), to show that the directional derivatives of ι at I exist and are given
by

(DBι)A = −A−1BA−1 . (5.4)

(d) Show that, for each B ∈ Mn×n(R), the map GL(n,R) → Mn×n(R) defined
by A 7→ −A−1BA−1, is continuous. Hence, by Corollary 5.5, the inversion-map ι is
differentiable, and

(Dι)A(B) = (DBι)A = −A−1BA−1. (5.5)

(In particular, (Dι)|I = −idMn×n(R)).

Remark 5.11 Power series are, by no means, the only way of showing that (Dι)|I =
−idMn×n(R). For example, we can use the identity

(I +B)
(
(I +B)−1 − I +B

)
= B2

(valid whenever I +B is invertible; in particular, whenever ∥B∥op < 1) to show that

∥(I +B)−1 − I +B∥op ≤ ∥(I +B)∥−1
op (∥B∥op)2

≤ (∥B∥op)2

1− ∥B∥op
if ∥B∥op < 1 (by (b)(iii) above, or Exercise 4.8(c)).

Letting T : Mn×n(R) → Mn×n(R) be the linear map B 7→ −B, it follows that for any
ϵ > 0, the inequality (1.2) is satisfied whenever ∥B∥op/(1 − ∥B∥op) < ϵ, hence whenever
∥B∥op is sufficiently small. Thus ι is differentiable at I and (Dι)|I = −idMn×n(R).

6 Continuous differentiability

Definition 6.1 If F : (U ⊂ V ) → W is differentiable we say F is continuously dif-
ferentiable (on U), or C1 (on U), if the induced map DF : U → Hom(V,W ) given by
p 7→ DF

∣∣
p
is continuous.

An immediate corollary of Proposition 5.3 is the following:

Corollary 6.2 Let F = (f 1, . . . , fm)t : (U ⊂ Rn) → Rm a function, and let {xi}ni=1 be
the standard coordinates on Rn. Then F is continuously differentiable if and only if each
of the partial derivatives ∂f i

∂xj exists throughout U and is continuous on U .

Proof: First assume that F is continuously differentiable. Then DF |p exists for every
p ∈ U , and the map U → Hom(Rn,Rm) given by p 7→ DF |p is continuous. By an earlier
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exercise, this implies that each of the partial derivatives ∂f i

∂xj exists throughout U and is
continuous.

Conversely, assume that each of the partial derivatives ∂f i

∂xj exists throughout U and
is continuous on U . By Proposition 5.3, F is differentiable at every point of U . By the
same exercise mentioned above, the assumed continuity of the partials implies that the
map U → Hom(Rn,Rm) given by p 7→ DF |p is continuous. Hence f is continuously
differentiable.

Remark 6.3 Because the conditions in Corollary 6.2 are necessary and sufficient for
continuous differentiability (not just-plain differentiability!) of F : (U ⊂ Rn)→ Rm, the

condition “if each of the partial derivatives ∂f i

∂xj exists throughout U and is continuous
on U” is often taken as the definition of “F is continuously differentiable on U”, in
place of Definition 6.1. (Definition 6.1 is conceptually the best definition of “continuous
differentiability”, but not the easiest definition to apply in practice.) Note, however, that
as stated, this alternate definition applies only for functions from (an open subset of) Rn

to Rm. For more general finite-dimensional vector spaces V and W , we must introduce
bases, and the associated coordinate functions, in order to make a similar definition. It is
not hard to show that, in this more general situation, the continuous-partial-derivatives
condition is independent of the choice of bases. ▲

Exercise 6.4 In the context of Definition 6.1, let V = Rn and W = Rm, write F as
(f 1, . . . , fm)t. Show that the map p 7→ DF

∣∣
p
is continuous if and only if the map

p 7→ JF (p)

is continuous as a map from U to the space Mm×n of m × n matrices, which in turn is

equivalent to all of the real-valued functions ∂f i

∂xj being continuous. (Suggestion: Use the
fact that {Eij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} is a basis of Mm×n, where Eij is the m× n matrix
whose (i, j)th entry is 1 and all of whose other entries are 0.)

7 “Mean Value Theorem” for vector-valued functions?

The Mean Value Theorem (MVT), a beautiful and important theorem for real-valued
functions of a real variable, asserts that for any continuous function f : [a, b]→ R that is
differentiable on (a, b), there exists c ∈ (a, b) such that f(b)− f(a) = f ′(c)(b− a).

It is easy to see that the MVT cannot generalize to functions whose codomains have

dimension greater than 1. For example, if we define f : [0, 2π]→ R2 by f(t) =

(
cos t
sin t

)
,

then the hypotheses of the MVT are met except for the codomain not being R, but

f(2π)− f(0) =

(
0
0

)
̸= 2πf ′(c) for any c,
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since f ′(t) is a nonzero vector for every t.

However, an important corollary of the MVT is that if I ⊂ R is an open interval, and
f : I → R is continuously differentiable, then for all a < b ∈ I we have |f(b) − f(a)| ≤
M |b − a|, where M = maxt∈[a,b] |f ′(t)|. Of course, if f ′ is bounded on the entire interval
I, then the above inequality also holds with M replaced by supt∈I |f ′(t)|. This corollary
of the MVT does generalize to the setting of Definition 1.1 (allowing the dimensions of
both the domain and codomain to be arbitrary natural numbers), provided the domain
is convex:

Definition 7.1 A subset U of a vector space V is called convex if for all p, q ∈ U the line
segment joining p and q lies entirely in U (i.e. if tp+ (1− t)q ∈ U for all t ∈ [0, 1]).

The lemma below should really not be called a “Mean Value Theorem”, but that’s
what my own Advanced Calculus 1 professor called it, and I’ve never found a better name
that’s not inconveniently long! I think of this result as a lemma, rather than an end result,
since its importance lies in its applications (none of which are in these notes).

Lemma 7.2 (“Mean Value Theorem” for vector-valued functions) Let U ⊂ V
be an open set and let F : U → W be a C1 map.

(a) Let K ⊂ U be a compact, convex set, Then for all p, q ∈ K,

∥F (q)− F (p)∥ ≤M∥q − p∥, (7.1)

where M = supx∈K ∥(DF )|x ∥op <∞.

(b) Suppose DF (viewed as the map x 7→ DF |x) is bounded on U , and that U is convex.
Then inequality (7.1) holds with M = supx∈U ∥(DF )|x ∥op .

Proof: If hypotheses (a) hold, define U ′ = K; if hypotheses (b) hold define U ′ = U . Under
hypotheses (a), the function K → R defined by x 7→ ∥(DF )|x ∥op is continuous, hence
achieves a maximum value. ThusM = supx∈K ∥(DF )|x ∥op = maxx∈K ∥(DF )|x ∥op <∞.
Hence, under hypotheses (a) or (b), the set U ′ is convex and the function DF is bounded
on U ′.

Let p, q ∈ U ′, let v = q − p (so q = p + v), and define γ : R → V by γ(t) = p + tv.
Then, since the image of γ lies in U ′, we have

F (q)− F (p) =
∫ 1

0

d

dt
F (γ(t)) dt =

∫ 1

0

DF |p+tv(γ
′(t)) dt =

∫ 1

0

DF |p+tv(v) dt.
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(In the first equality, we have used the Fundamental Theorem of Calculus for Vector-
Valued Functions, which can be proven “easily” from the FTC for real-valued functions.3

Continuity of DF is being used to ensure that the function t 7→ DF |p+tv(v) is continuous,
hence integrable. This is the only reason we needed to assume that F is C1—i.e. that the
map q 7→ DF |q is continuous—rather than just a differentiable function whose derivative
is bounded.) Hence

∥F (q)− F (p)∥ =

∥∥∥∥∫ 1

0

(DF |p+tv)(v) dt

∥∥∥∥
≤

∫ 1

0

∥(DF |p+tv)(v)∥ dt (by the “triangle inequality for integrals”)

≤
∫ 1

0

∥DF |p+tv∥op ∥v∥ dt

≤
(

sup
x∈image(γ)

∥(DF )
∣∣
x
∥op

)
∥v∥

≤
(
sup
x∈U ′
∥(DF )

∣∣
x
∥op

)
∥v∥

= M∥q − p∥.

8 Higher-order Derivatives

Suppose that F : (U ⊂ V ) → W is differentiable. Let Df : U → Hom(V,W ) be the
map defined by p 7→ Df |p. Since Hom(V,W ) is another finite-dimensional vectore space,
we have defined what “differentiable function U → Hom(V,W )” means. We say that
f is twice differentiable (either at a specified point, or—if no specific evaluation-point is

3The proof is truly easy only if we mistakenly forget that an m-dimensional vector space is only
isomorphic to Rm, not equal to Rm, and then define vector-valued integrals componentwise. If we don’t
assumeW = Rm, but choose a basis ofW and then define the integral componentwise, we must check that
values of integrals are independent of our choice of basis. See “Notes on Riemann Integration” (posted
at http://dgarchive.com/classes/6256 f25/homepage.html), Section 1.9, for a treatment of vector-valued
integration that does not start with choosing a basis. Exercises 1.20, 1.21, 1.22(c), and 1.23(b) (pp.
58–59) address the FTC for VVF’s. The form of the “triangle inequality for integrals” (valid for any
norm on W ) used below is Corollary 1.92 (p. 52). To prove a special case of this, Rudin’s Principles of
Mathematical Analysis gives a “clever trick” that works, directly, only for the case W = Rm and ∥ ∥ =
Euclidean norm. In the finite-dimensional case, Rudin’s trick can be generalized by using the dual pairing
W ∗ ×W → R instead of the standard inner product on Rm. This trick can be further generalized to
any Banach space W (including infinite-dimensional spaces) using the Hahn-Banach Theorem. But using
such a cannon to kill a flea—and even using Rudin’s trick in the simplest case—obscures the fundamental
reason why the “triangle inequality for integrals” holds for functions taking values in any Banach space,
namely the ordinary triangle inequality.
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mentioned—throughout U) if Df is differentiable. Recursively, we define f to be k times
differentiable if Df is (k − 1)-times differentiable, and call Dkf |p := D(Dk−1f)|p the kth

derivative of f at p. If Dkf is continuous, we say that f is Ck (k-times continuously
differentiable). Note that, when these derivatives exist, they live in progressively larger
and more formidable-looking vector spaces:

Df |p ∈ Hom(V,W )

D2f |p ∈ Hom(V,Hom(V,W ))

D3f |p ∈ Hom(V,Hom(V,Hom(V,W )))
...

Fortunately, these vector spaces are canonically isomorphic to simpler-looking ones. We
will see this shortly, but first, we examine how D2f is related to directional derivatives
(for a twice differentiable function). For this we need a lemma:

Lemma 8.1 Let g : (U ⊂ V ) → Hom(V,W ) be a differentiable map, and let p ∈ U .
Then for all u, v ∈ V

(Dg|p(u)) (v) = (Dug)|p(v) = Du

(
q 7→

∈ W︷ ︸︸ ︷(
g(q)

)︸ ︷︷ ︸
∈

Hom(V,W )

(v)
)
|p

Proof: First, given any interval (or any topological space) I, any t0 ∈ I, and any map
t 7→ A(t) from I to Hom(V,W ) for which limt→t0 A(t) exists, then for all v ∈ V , letting
L = limt→t0 A(t),

∥A(t)u− L(u)∥ ≤ ∥A(t)− L∥op ∥v∥ → 0 as t→ t0 .

Hence L(v) = limt→t0(A(t)v); i.e.(
lim
t→t0

A(t)

)
v = lim

t→t0
(A(t)v). (8.2)

Let u, v ∈ V . Applying (8.2) with A(t) = g(p+tu)−g(p)
t

and I an open interval contain-
ing 0,

(Dg|p) (u) = (Dug)p(v) (by Proposition 3.4)

=

(
lim
t→0

g(p+ tu)− g(p)
t

)
(v)

= lim
t→0

(
g(p+ tu)− g(p)

t
(v)

)
= lim

t→0

(
(g(p+ tu))(v)− (g(p))(v)

t

)
= Du(q 7→ (g(q))(v)).
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Suppose now that f : (U ⊂ V ) → W is twice differentiable at p and let u, v ∈ V .
Then by definition of D2f and Proposition 3.4,

(D2f)p(u) = D(Df)|p(u) = Du(Df)|p

(an element of Hom(V,W )). Hence(
(D2f)p(u)

)
(v) = (Du(Df)|p) (v)

= (Du (q 7→ (Df)|q(v))) |p
= (Du (q 7→ (Dvf)|q)) |p. (8.3)

Equation (8.3) is the sought relation between the second derivative D2f and (iterated)
directional derivatives.

Definition 8.2 Let V1, V2, . . . Vk be finite-dimensional vector spaces. A map
B : V1 × V2 → W is bilinear if it is linear in each variable separately; i.e. if for all
v1 ∈ V1, the map V2 → W defined by u 7→ B(v1, u) is linear and for all v2 ∈ V2, the map
V1 → W defined by u 7→ B(u, v2) is linear.

Similarly we define trilinear maps V1 × V2 × V3 → W , and, more generally k-linear
or multilinear maps V1 × V2 × · · · × Vk → W .

In these notes we use the terminology Bihom(V1 × V2,W ) for the set of all bilinear
maps V1×V2 → W , and analogously define the terminology Trihom(V1×V2×V3,W ) and
k-Hom(V1 × V2 × · · · × Vk,W ). ▲

For any nonempty set A, the set Func(A,W ) of all maps from A to W has a canon-
ical vector-space structure, induced by pointwise operations

(
(f + g)(a) = f(a) + g(a);

(cf)(a) = c(f(a); 0Func(A,W ) = the constant function a 7→ 0W
)
. By convention, when we

say that S ⊂ Func(A,W ) “is” a vector space, we mean that S is a vector subspace of
Func(A,W ).

Exercise 8.3 Let V1, V2, . . . Vk be finite-dimensional vector spaces. Then
k-Hom(V1 × · · · × Vk,W ) is a vector space.

Lemma 8.4 Let V1, V2, . . . Vk be finite-dimensional vector spaces. Then
Hom(V1,Hom(V2,W )) is canonically isomorphic to Bihom(V1 × V2,W ) (via the isomor-
phism given in the proof below).

More generally, Hom(V1,Hom(V2,Hom(V3, . . . ,Hom(Vk,W )))) is canonically isomor-
phic to k-Hom(V1×V2 · · ·×Vk,W ). In particular, this holds when V1 = V2 = · · · = Vk = V .
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Proof: [Sketch] For L ∈ Hom(V1,Hom(V2,W )), define a map L̂ : V1 × V2 → W by

L̂(v1, v2) =
(
L(v1)

)
(v2)

As is easily checked, for every L ∈ Hom(V1,Hom(V2,W )), the map L̂ : V1 × V2 → W .
Hence the assignment L 7→ L̂ defines a map φ from the vector space Hom(V1,Hom(V2,W ))
to the vector space Bihom(V1 × V2,W ). As is easily checked, φ is linear and invert-
ible. (Its inverse is the map ψ : Bihom(V1 × V2,W ) → Hom(V1,Hom(V2,W )) defined by
(ψ(B))(v1) = B(v1, ·) .)

This yields the k = 2 case of the lemma. Induction then yields the general case.

For a twice differentiable map f : (U ⊂ V ) → W , we may post-compose D2f with
the canonical isomorphism in Lemma 8.4 to obtain a map U → Bihom(V × V,W ).

(Standard) convention: For f as above, we avoid introducing extra notation, and
simply regard D2f as a map from U to Bihom(V × V,W ). More generally, if f is k-times
differentiable, we regard Dkf as a map from U to k-Hom(V × V × · · · × V,W ).

For example, we view (D2f)|p as the bilinear map V × V → W given by

(D2f)|p(u, v) = “old”
(
(D2f)p(u)

)
(v)

= Du (q 7→ (Dvf)|q) (by equation (8.3)).

Similar principles apply to derivatives of higher order.

Example 8.5 (the case V = Rn,W = R) Let {ei}ni=1 be the standard basis of Rn and
{xi}ni=1 the standard coordinates on Rn. Let U ⊂ Rn be an open set and suppose that
f : U → R is k-times differentiable, where k ≥ 2. Then

(D2f)(ei, ej) = Dei(Dejf) =
∂

∂xi

(
∂f

∂xj

)
=

∂2f

∂xi ∂xj
,

and more generally,

(Dkf)(ei1 , ei2 , . . . , eik) =
∂kf

∂xi1 . . . ∂xik
.

▲

Theorem 8.6 (Equality of cross-partials) Let U ⊂ Rn be open and let f : U → R be
a function all of whose first and second partial derivatives exist. Let i, j ∈ {1, . . . , n}. If

both ∂2f
∂xi ∂xj and ∂2f

∂xj ∂xi are continuous, then they are equal to each other.

Proof: Omitted.

Corollary 8.7 Let U ⊂ V be open, f : U → W a C2 function, and let p ∈ U . Then the
bilinear map (D2f)|p : V × V → W is symmetric.
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Exercise 8.8 Prove Corollary 8.7. (First use Theorem 8.6 to handle the case
V = Rn,W = R. Use this to generalize to the case V = Rn,W = Rm, and finally
to general vector spaces of these dimensions.)

Exercise 8.9 Let n = dim(V ), let m = dim(W ), and suppose that L : V → Rn and
L′ : W → Rm are isomorphisms. (Note: since linear maps between finite-dimensional
vector spaces are continuous, isomorphisms carry open sets to open sets.) Let k ≥ 1.
Then a map f : (U ⊂ V ) → W is k-times differentiable (respectively, Ck) if and only if
the map f̃ := L′ ◦ f ◦ L−1|L(U) : (L(U) ⊂ Rn)→ Rm is k-times differentiable (resp. Ck).

Furthermore, if f and f̃ are k-times differentiable, then the following relation holds for
all p ∈ U :

(Dkf)|p(v1, . . . , vk) = (L′)−1
(
(Dkf̃)|L(p)(L(v1), . . . , L(vk))

)

Exercise 8.10 Let k ∈ N, let U ⊂ Rn be open, and let f =

 f 1

...
fm

 : U → Rm be a

k-times differentiable function. Let Jf : U → Mm×n(R) be the Jacobian matrix of f (a
matrix-valued function of the evaluation-point).

(a) Prove that the following are equivalent:

(i) For all j1, . . . , jk ∈ {1, . . . , n} and all i ∈ {1, . . . ,m}, the function ∂kf i

∂xj1 ...∂xjk
: U → R

is continuous.

(ii) For all j ∈ {1, . . . ,m} and all i ∈ {1, . . . , n}, the function ∂f i/∂xj is Ck−1.

(iii) The function Jf : U →Mm×n(R) is Ck−1.

(iv) The function f : U → Rm is Ck.

(b) Show that if f is Ck, then for all j1, . . . , jk ∈ {1, . . . , n}, all i ∈ {1, . . . ,m}, and
every permutation σ of {1, . . . , k},

∂kf i

∂xj1 . . . ∂xjk
=

∂kf i

∂xjσ(1) . . . ∂xjσ(k)
. (8.4)

In particular, (8.4) holds for a permutation that re-orders the indices j1, . . . , jk in in-
creasing order. Hence, every kth order partial derivative of f i is equal to one of the form

∂kf i

∂xj1 ...∂xjk
with j1 ≤ j2 ≤ · · · ≤ jk.

Note: in parts (a)(i) and (ii), if we use vector-valued partial derivatives as defined in
equations (3.1)–(3.1), we can omit the index i and the “for all i ∈ {1, . . . ,m}.” ▲
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Exercise 8.11 Let k ∈ N and let f : (U ⊂ V ) → W. Prove that the following are
equivalent.

(i) f is Ck.

(ii) For all v1, v2, . . . , vk ∈ V , the map U → W defined by p 7→ Dkf |p(v1, v2, . . . , vk) is
continuous.

(You should find this a straightforward consequence of Exercise 8.10(a)’s equivalence
“(i)⇐⇒ (iv).”)

Exercise 8.12 Consider again the inversion map ι : GL(n,R) → Mn×n(R). In Exercise
5.10, you showed that ι is differentiable, and that for A ∈ GL(n,R), the directional
derivatives of ι at A are given by

(DBι)A = −A−1BA−1 (for all B ∈Mn×n(R)) . (8.5)

(a) Use Exercise 3.9, equation (8.5), and the fact that (for any B ∈ Mn×n(R)) the
left-translation map LB : Mn×n(R) → Mn×n(R), X 7→ BX is linear (hence its own
derivative at any point in Mn×n(R)), to show that for all B,C ∈Mn×n(R),

(D2ι)|A(B,C) = A−1BA−1C A−1 + A−1C A−1BA−1 . (8.6)

(Remark: When n = 1, equation (8.6) yields (D2ι)|x(1, 1) = 2x−3. But from Example 8.5,
(D2ι)|x(1, 1) = d2ι/dx2. Hence we recover the Calculus 1 result that d2

dx2 (x
−1) = 2x−3.

Equation (8.6) is the matrix version of this Calc 1 result.)

(b) Generalize part (a) to show that, for any k ∈ N, A ∈ GL(n,R), and B1, . . . , Bk ∈
Mn×n(R),

(Dkι)|A(B1, . . . Bk) = (−1)k
∑
σ∈Sk

A−1Bσ(1)A
−1Bσ(2)A

−1 . . . A−1Bσ(k)A
−1 ,

where Sk is the symmetric group of degree k, the group of permutations of {1, 2, . . . , k}.
Compare this with the Calc 1 formula for dk

dxk x
−1.

The set of functions U → R, endowed with pointwise addition of functions and
multiplication by scalars, is a vector space F(U,R).

Lemma 8.13 For all k ∈ N ∪ {∞}, the space Ck(U) := {Ck maps from U to R} is a
subspace of F(U,R) (hence is a vector space).

Proof: Exercise.

29



Lemma 8.14 (the product of Ck functions is Ck) For any k ∈ N ∪ {∞}, if f, g :
(U ⊂ V )→ R are Ck functions, then so is fg.

Proof: By definition of “C∞ ”, it suffices to prove the result just for k ∈ N. For a given
k ∈ N, Exercise 8.9 shows that if suffices to prove the result for V = Rn (with n ∈ N
arbitrary).

Let n ∈ N, let {xi}ni=1 be the standard coordinates on Rn, and let f, g : (U ⊂ Rn)→
R be C1 functions.

Let i ∈ {1, . . . , n}. Then
∂

∂xi
(fg) =

∂f

∂xi
g + f

∂g

∂xi
. (8.7)

Since f is C1, the function ∂f
∂xi is continuous. Since g is differentiable, g is continuous.

Hence the product ∂f
∂xi g is continuous. Similarly, f ∂g

∂xi is continuous. Hence the RHS of
equation (8.7) is continuous, and therefore so is the LHS.

Thus ∂
∂xi (fg) is continuous for each i ∈ {1, . . . , n}. By Corollary 6.2, fg is C1.

Now let k ∈ N, and assume that the product of any two Ck functions U → R is
Ck. Let f, g : U → R be Ck+1 functions. Then by Exercise 8.10, for each i ∈ {1, . . . , n}
the partial derivatives ∂f/∂xi and ∂g/∂xi are Ck. Since f and g are Ck+1, they are also
Ck. Hence each product on the RHS of equation (8.7) is a product of Ck functions. By
our inductive hypothesis, each of these products is Ck, so by Lemma 8.13, the RHS of
equation (8.7) is Ck. Hence all first partials of fg are Ck. By Exercise 8.10 again, fg is
Ck+1.

By induction, it follows that for all k ∈ N, if f, g : U → R are both Ck, then so is
fg.

Corollary 8.15 (the composition of Ck functions is Ck) Let Z be a finite-dimensional
vector space. For any k ∈ N∪ {∞}, if f : (U1 ⊂ V )→ (U2 ⊂ W ) and g : U2 → Z are Ck

functions, then so is g ◦ f : U1 → W.

Proof: By definition of “C∞ ”, it suffices to prove the result just for k ∈ N. For a given
k ∈ N, Exercise 8.9 and Proposition 4.3 together show that it suffices to prove the result
for V = Rn, W = Rm, and Z = R (with n,m ∈ N arbitrary).

Let n,m ∈ N, and let U1 ⊂ Rn and U2 ⊂ Rm be open sets. Let {xj}nj=1 and {yi}mi=1

denote the standard coordinates on Rn and Rm, respectively. Let f : U1 → U2 ⊂ Rm and
g : U2 → R be C1 functions, and let h = g ◦ f . Let f i = yi ◦ f (the ith component of f)
for i ∈ {1 . . . ,m}. Since k ≥ 1, the Chain Rule Theorem implies that h is differentiable
and that its (first-order) partial derivatives are given by equation (4.6). Hence, for all
j ∈ {1, . . . , n},

∂h

∂xj
=

m∑
i=1

(
∂g

∂yi
◦ f

)
∂f i

∂xj
. (8.8)
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This formula implies that h is not merely differentiable, but continously differentiable
(C1), as follows. Let i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}. Since f is differentiable, f is contin-
uous. Since g is C1, the function ∂g/∂yi is continuous, and hence so is the composition
(∂g/∂yi) ◦ f . Since f is C1, the function ∂f i/∂xj is continuous. Thus the ith summand
on the RHS of equation (8.8) is continuous. Thus the RHS of equation (8.8) is a finite
sum of continuous functions, hence is continuous.

Hence ∂h/∂xj is continuous, 1 ≤ j ≤ n, and therefore h is C1 (by Corollary 6.2).

This establishes that given any C1 functions f : U1 → U2 and g : U2 → R, the
composition g ◦ f : U → R is C1.

Now let k ∈ N, and assume that for any two Ck functions f̃ : U1 → U2 and g̃ : U2 →
R, the composition g̃ ◦ f̃ is Ck. Let f : U1 → U2 and g : U2 → R be Ck+1 functions, and
let h = g ◦ f . Let j ∈ {1, . . . ,m} and let i ∈ {1, . . . , n}. Then ∂g/∂yi is Ck (again using
Exercise 8.10), and f is Ck since f is Ck+1. Thus, by the inductive hypothesis, ∂g

∂yi
◦ f

is Ck. The function ∂f i

∂xj is also Ck (by Exercise 8.10). Hence the ith summand on the
RHS of equation (8.7) is a product of two Ck functions, hence is Ck. It then follows from
Lemma (8.13) that the RHS of (8.7) is Ck, and therefore so is the LHS.

Hence every first partial derivative of h is Ck. Using Exercise 8.10 again, we conclude
that h is Ck+1.

If follows by induction that, for all k ∈ N, if f : U1 → U2 and g : U2 → R are both
Ck, then so is g ◦ f .

Remark 8.16 The key to proving Corollary 8.15 efficiently in the case V = Rn,
W = Rm, Z = R was to avoid wasting time trying to produce a formula for higher-
order partial derivatives of compositions. The student with lots of free time to spare is
invited to try to produce an exact formula just for the case m = n = 1. There is an ap-
proach, of intermediate efficiency, that involves stating (precisely) and showing that, when
f and g are k-times differentiable, every kth-order partial derivative of g ◦ f is a polyno-
mial in {(partial derivatives of g of order ≤ k) ◦ f}∪{(partial derivatives of order ≤ k of
components of f)}. It is not hard to do this, or to see that the terms and coefficients
of the relevant polynomials must satisfy some simple constraints. However, it takes time
and space to write all this down carefully, and the work is not needed if Corollary 8.15 is
all we’re after.4

4There is one application, which will not arise in these notes, in which the terms of these polynomials
that involve the exactly-kth-order partials of g are important.
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