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Bump-functions and the locality of Leibnizian linear operators

Throughout this discussion, M is a manifold of dimension n > 0, and F(M)
denotes the algebra of smooth real-valued functions on M. For each p € M, the set
F,(M) of “smooth functions defined on an open neighborhood of p” is defined as in
class, and G,(M) denotes the algebra of smooth germs of real-valued functions at p.

Definition 1.1 Let f be a real-valued function on M. The support of f, denoted
supp(f), is the closure of the set {p € M | f(p) # 0}. If U C M and supp(f) C U,
we say that f is supported in U; if, in addition, supp(f) is compact, we say that f is
compactly supported in U

Let X be a vector field on M. Then X acts as a Leibnizian linear operator
F(M) — F(M), and, for each p € M, X also acts as a Leibnizian linear operator
G,(M) — R (via the action of X,).! We may ask whether the action of X on
F (M) determines the action of X on G,(M). In other words, can every germ at p be
represented by a smooth real-valued function f defined on all of M?

The answer is yes. The key to showing this is the existence of “smooth bump-
functions”:

Lemma 1.2 Letp € M and let U be an open neighborhood of p. There exist an open
neighborhood V' of p and a smooth function p : M — R, compactly supported in U,
with range in [0,1], such that p is identically 1 on V.

Since the function p in the lemma is continuous and achieves the values 0 and 1,
its range is ezactly [0, 1], but there is no need to assert this in the definition or in the
later proof. (Similarly, since the neighborhood V' on which p =1 is contained in supp(f),
it is automatic that V C U, so there is no need to assert this containment in the lemma,
or to say anything like “V can be chosen to lie in U.”) The proof of Lemma 1.2 will be
given later in these notes; for now simply assume the lemma.

Proposition 1.3 Let p € M and let g be a smooth germ at p. Then there exists
f € F(M) such that g is the germ of f at p. In fact, given any representative (f1,U)
of g, there exists such an f that is compactly supported in U.

LA Leibnizian linear map from one algebra (over a given field, in this case R) to another is also
called a derivation.



Proof: Let (f1,U) be such that g = [(f1,U)], where “[ |” denotes equivalence-class
under the relation that defines “germ at p”. Let V and p be as in Lemma 1.2. Define
f:M — R by

flp) = { g(p)fl(p) ig E ]Uwv L (1.1)

Observe that M = U U (M \ supp(p)) (since supp(p) C U), the union of two open
sets. Since f; and p are smooth on U, so is the product pfi, so f|y is smooth. By
definition f is identically 0 on M \ supp(p), hence is smooth on this open set as well.
Hence f is smooth, and supp(f) is a closed (hence compact) subset of the compact

set supp(p).
Finally, flv = filv, so [(f, M)] =[(f,,U)]. W

Remark 1.4 The fact that we can take p in Lemma 1.2 to have range in [0, 1], and
can take p in Lemma 1.2 and f in Proposition 1.3 to have compact support as the
indicated therein, will not be used in these notes. However, these facts are important
for some applications outside these notes.

Corollary 1.5 Let U C M be a nonempty open subset of M, let f : M — R be
a smooth function that vanishes identically on U, and let L : F(M) — F(M) be a
Leibnizian linear operator. Then the function L(f) vanishes identically on U.

Proof: Let p € U. Let V and p be as in Lemma 1.2. Then pf = 0, since f = 0 on
U and p=0on M — UHence f = (1 — p)f, and thus. Then

LAl =L((A=p) ), = (L =p)lpf0)+ (1= p@)L(f)]
= 0,

since f(p) = 0 and p(p) = 1. Since p € U was arbitrary, the conclusion follows. W

Corollary 1.6 Let L : F(M) — F(M) be a Leibnizian linear operator and let p € M.
Then for all f € F(M), the value of L(f) at p depends only on the germ of f at p.
(Le. if f1, fo € F(M) have the same germ at p, then L(f1)|, = L(f2)lp-)

Proof: Let fi, fo € F(M) be functions with the same germ at p, and let g = fo — fi.
Then ¢ vanishes identically on some open neighborhood U of p. By Corollary 1.5,
L(g)|, = 0. Since L is linear, it follows that L(f,)|, = L(f2),. W



Remark 1.7 What Corollary 1.6 asserts is a locality principle for Leibnizian linear
operators L : F(M) — F(M): for all f € F(M) and p € M, the value of L(f) at p
depends only on the behavior of f in an arbitrarily small neighborhood of p.

Lemma 1.8 Let X be a “set-theoretic vector field” on M: a map M — T M, here
denoted p — X, such that X, € T,M for allp € M. For each f € F(M), define the
function X(f) : M — R by X(f)|, = Xp(f). If X(f) is smooth for each f € F(M),
then so is the map X : M — TM, and therefore X is a (smooth) vector field on M.

Proof: (Omitted; it’s part of a homework problem.) W

Using the definition of “vector field” given in class, the “(smooth)” in the last line
of the above lemma is redundant. But if we relax the smoothness requirement in that
definition, we can define “continuous vector field”, “C* vector field”, and “smooth
(= C*) vector field”. The convention we're using in class, for simplicity, is that
“vector field” means “smooth vector field” unless otherwise specified.

Corollary 1.9 Let L : F(M) — F(M) be a Leibnizian linear operator. Then there
exists a unique vector field X on M such that L(f) = X (f) for all f € F(M).

Proof: Let p € M and let g € G,(M). By Proposition 1.3, there exists f € F(M)
representing the germ g. Corollary 1.6 implies that the map X, : G,(M) — R given
by g — L(f)|, is well-defined. For g¢1,¢2 € G,(M) and c1,¢c2 € R, if fi, fo € F(M)
represent gi, go respectively, then c; fi + cofo represents c1g; + cogo. It follows that
since L is linear and Leibnizian, so is X,,. Thus X, € T,M (under the canonical
identification of 7, M with the space of Leibnizian linear functions G,(M) — R).

Hence the map X : M — T'M defined by p — X, is a “set-theoretic” vector field
on M. By construction, for all f € F(M) and all p € M we have L(f)|, = X,(f).
Since L(f) is smooth for all f € F(M), it follows that so is X (f) (the function defined
by p — X,(f). By Lemma 1.8, it follows that X is a (smooth) vector field on M.

Thus X is a vector field with the property that L(f) = X(f) for all f € F(M).
If Y is a vector field with this property and p € M, then for all f € F(M) it follows
that Y,(f) = L(f)|, = X,(f). Proposition 1.3 then implies that Y, = X,. Since p
was arbitrary, Y = X.

Thus, we have a canonical identification

{vector fields on M} <— {Leibnizian linear operators F (M) — F(M)}.

Because of this, we say that a map L : F(M) — F(M) “is” a vector field if L is
linear and Leibnizian.

[Pl

We still must prove Lemma 1.2, which we will do in several stages. Below, “y” is
not meant to remind you of curves; it’s simply the letter that comes after o and .
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Lemma 1.10 ? Let a,b € R, with a < b. There exists a smooth function v = v, :
R — R such that

v(z) = 1forall z <a,
v(z) = 0 forall z > b,

and v s strictly decreasing on |a, b|.
Proof: Define a: R — R by

) = e V7 if £ >0,
o(r) =19 g if 2 < 0.

Then (as the student should check) « is smooth.

Now define 5 : R — R by () = a(x — a)a(b — x). Then f is smooth, strictly
positive on the interval (a,b), and identically zero outside this interval.

Finally, define v : R — R by
(1.2)

Then (as the student should check), v has the desired property. W

Remark 1.11 Functions such as the function # in Lemma 1.10 are often called bump
functions on R.

In these notes, we will make no use of the fact that the function 7,; in Lemma
1.10 is strictly decreasing on [a, b]. It’s just nice to know that we can choose v, to
have this property (in addition to the others stated in Lemma 1.10) in case we ever
want to use this fact.

Corollary 1.12 Let a,b € R, with 0 < a < b, and let xog € R (where n > 1). Then
there exists a smooth function X = Agpa, : R™® — [0, 1] such that

AMz) = 1if ||z — x| <a,

AMz) = 0if ||z — zo]| >0,

where || || is the Buclidean norm on R™ (||z|| = (3, (2))*)Y/2).
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?Lemma 1.10 and Corollary 1.12 are essentially copied from M. W. Hirsch, Differential Topology,
Springer-Verlag 1976.



Proof: The function A defined by A(x) = va5(||x — 0||), where v, is as in Lemma
1.10, has all the desired properties (as the student should check). H

Remark 1.13 Functions such as the function A, ,, in Corollary 1.12 are often called
bump functions or cutoff functions or on R™. “Cutoft” is most commonly used only
when zy = 0.

Proof of Lemma 1.2: Let (Uy, ¢) be a chart containing p. Since (U; NU, ¢|y,~v) is
another such chart, without loss of generality we may (and will) assume that U; C U.

Let g = ¢(p). For r > 0 and z € R", let B,(z), B,(z) denote the open and
closed balls of radius r, centered at x, with respect to the Euclidean metric on R".
Since (Up) is open in R, we may select r > 0 such that B,(z9) C ¢(U;). Let
a=7%,b=5%, and let A : R" — [0,1] be a function having the properties of A\qp 4, in
Corollary 1.12. Let V = ¢ (B, 4(x0)), Vo = ¢~ (B, 2(20)), and W = M — V5; note
that W > M —U; D M —U. Then V is an open neighborhood of p, the pair {U;, W}
is an open cover of M, and \ is compactly supported in Vo C U. Define p: M — R
by

(q) _ )‘(QD(Q)) if g € Un,
p 0 ifgeW > M—-U, > M—U.

(This definition is self-consistent since A = 0 on Uy, N W = U; — V5.) Then p is
compactly supported in V5 C U and has range in [0,1], and p|y = 1. Furthermore,
plu, = Aoy, a smooth function, and p|w = 0, also a smooth function. Hence p is
smooth. W



