
Differential Geometry—MTG 6256—Fall 2025
Problem Set 1: Fun with Matrices

Due-date for required problems: Monday 9/22/25

General reminders for any handed-in work

Even when homework is well written, reading and grading it is very
time-consuming and physically difficult for me. To keep this task from being
more burdensome than it intrinsically needs to be:

1. Use plain, white, unlined, printer paper with no holes.

2. Make sure your work is neat and easy to read. It should either be typed (prefer-
ably in LaTeX) or written in pen or dark pencil, and there should be no
over-writing (superimposing new writing on old, with or without erasure of
the old writing first).

3. If you type your homework, use 12-point font. (LaTeX often defaults to 10-point
font. To get 12-point font in, say, the “article” document class, the command I
use is \documentclass[12pt]{article}.)

4. Staple your sheets together in the upper left-hand corner. Any other means of
attachment makes more work for me. The staple should be close enough to the
corner that when I turn pages, nothing that you’ve written is obscured. (If you

have trouble getting the staple close enough to the corner to achieve this, you haven’t left

wide enough margins; see below.)

5. If you are writing on both sides of a sheet of paper, do not use paper/ink/pencil
combinations for which the writing on one side of the paper shows on the other
side (or darkens it).

6. Please use wide margins—at least 1.75”—on all four edges (left and right and
top and bottom). LaTeX preamble commands that will accomplish this in the
“article” document class are

\setlength{\textwidth}{5 in}
\setlength{\textheight}{7.3 in}
\setlength{\oddsidemargin}{.75 in}
\setlength{\topmargin}{0.2 in}

7. Make sure your sentences are unambiguous, as well as being correctly punc-
tuated, grammatically correct, and complete.
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Required problems (to be handed in; due-date 9/22/25): 2, 3, 4, 5 10ab.
You should also read the footnote in problem 7. In doing any of these problems, you
may assume the results of all earlier problems (optional or required).

Optional problems: All the ones that are not required.

Items in blue are side-comments (sometimes intended as hints).

Below, Mn(R) denotes the vector space of n× n real matrices, and GL(n,R) the
subset of invertible matrices.

Several problems on this list were already done, or essentially done, in class and/or
in the “Review of Advanced Calculus” notes; they are included as a guide and a
reminder. For the same reason, some facts stated in class are stated again here.
Problems 1–9 are meant to be done in the given order; in many cases the results of
earlier problems are applicable to later problems. Problem 10 does not really use any
of the other problems.

When asked to find the derivative of a map, express your answer by writing down
a formula that gives all directional derivatives.

1. Let U ∈ R be open, W a finite-dimensional vector space, f : U → W differentiable
at p ∈ U . Show that Df |p(1) = f ′(p).

2. Let V,W1,W2 be finite-dimensional vector spaces of positive dimension, U ⊂ V
open, p ∈ U , and gi : U → Wi differentiable at p for i = 1, 2. Define f : U → W1⊕W2

by f(q) = (g1(q), g2(q)). Show that f is differentiable at p and compute Df |p(v) for
arbitrary v ∈ V .

Note: one general approach to a problem of the form “show that a function F
is differentiable at point q, and compute the derivative DF |q” is to compute all the
directional derivatives (DvF )q. If this expression is not linear in v, then F is not
differentiable at q (and you were instructed to show something that was false). If
(DvF )q is linear in v, then the linear transformation T defined by T (v) = (DvF )q is
the only candidate for DF |q. You can then try to show that F is differentiable at q
either by plugging this T into the definition of “differentiable at q” and showing that
the relevant limit is zero, or by showing that, for all fixed v, the map q̃ 7→ (DvF )q̃
is continuous in q̃ (in which case, automatically, F is not merely differentiable at q,
but continuously differentiable at q). The former approach is the one to use in this
problem; nothing in the hypotheses implies continuity of the directional derivatives.

3. Define µ : Mn(R)⊕Mn(R) → Mn(R) by µ(A,B) = AB (matrix multiplication).
Show that µ is differentiable, and compute its derivative.

4. Let g, h : Mn(R) → Mn(R) be differentiable and define f(A) = g(A)h(A). Note
that f = µ◦ j, where µ is the map in problem 3 and j : Mn(R) → Mn(R)⊕Mn(R) is
defined by j(A) = (g(A), h(A)). Prove that f is differentiable, and (using directional
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derivatives) express the derivative of f in terms of the derivatives of g and h.
If your answer is correct, then in the case n = 1, you should find with the aid

of problem 1 that you’ve recovered the “product rule” from Calculus 1. Thus, the
Calculus-1 product rule is a corollary of the (multivariable) Chain Rule.

5. Define f : Mn(R) → Mn(R) by f(A) = AtA, where At is the transpose of A. Show
that f is differentiable and find its derivative.

Observe that AtA is always a symmetric matrix, so we can also define a map

f1 : Mn(R) → Symn(R) (the space of n × n symmetric matrices) by f1(A) = AtA. This

fact will be used to prove something important in a later homework assignment. Note

that for any A,B ∈ Mn(R), we have Df1|A(B) = (DBf1)|A = (DBf)|A = Df |A(B); the

only difference between Df1|A and Df(A) is the codomain of the derivative (Symn(R) vs.

Mn(R)).

6. Let m ≥ 1 be an integer and let f(A) = Am for A ∈ Mn(R). Show that f is
differentiable and find its derivative.

7. We saw in class that GL(n,R) is an open subset of Mn(R). Show that it is also
dense. Hint for a quick proof: characteristic polynomial. (Look up the term if you’ve
forgotten what it means, or never learned it.) Of course, there are many other proofs
as well.

8. Define ι : GL(n,R) → Mn(R) by ι(A) = A−1. In this exercise, you will show
that ι is differentiable by a method different from the one sketched in class1, without
needing to show ahead of time that ι is continuous. (In class, I used the continuity of ι to

deduce that directional derivatives were continuous, and said that continuity is not hard to

show. That fact is true; we just don’t need it in the approach below. Once differentiability

is shown, we can deduce continuity of ι from the general fact that differentiability implies

continuity.) The idea is the following:

� For a fixed A, we find a linear transformation T that is the only possible candi-
date for the derivative of ι at A.

� We plug this T into the quotient whose limit we take in the definition of “deriva-
tive”, and show directly that the limit of the quotient is zero.

1Neither this method nor the power-series method in the “Review of Advanced Calculus” notes is
the fastest way to show that ι is differentiable. The fastest way is simply to observe that there is an
explicit formula for the inverse of an invertible matrix A, expressing the entries of A−1 as rational
functions of the entries of A, where the denominator of each rational function is det(A) (see the last
sentence of problem 10(c)). Thus, composing appropriately with an isomorphism between Mn(R)

and Rn2

, ι becomes a map from an open set in Rn2

to Rn2

, each of whose component-functions
is a rational function with nonzero denominator. Each component-function is therefore not just
differentiable, but C∞, and therefore ι is actually a C∞ map. This fact is important to know,
independent of this homework problem. The purpose of this homework problem is intended to teach
some other ideas related to the matrix-inversion map.
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The same method can be used in many other examples. Usually the candidate T is
found by computing directional derivatives, but in the case of ι there is a “cheaper”
approach to finding the only candidate. This is part (a) below.

(a) Using the result of problem 4, show that if ι is differentiable, then (DAι)(B) =
−A−1BA−1 for all A ∈ Mn(R), B ∈ GL(n,R). Note that for fixed A, the expression
−A−1BA−1 is linear in B.

(b) Show that if A ∈ Mn(R), then A is invertible if and only if A is bounded below,
i.e. iff there exists c > 0 such that ∥Av∥ ≥ c∥v∥ for all v ∈ Rn.

(c) Using part (b) and the triangle inequality, show that for all A ∈ GL(n,R),
there exists δ > 0 such that if ∥B∥ < δ then A + B is bounded below, hence is
invertible. (This gives another proof that GL(n,R) is open in Mn(R), of course.) Here
and below, the norm used onMn(R) is the operator norm determined by the standard
Euclidean norm on Rn.

(d) Fix A ∈ GL(n,R) and define T to be the linear transformation found above
in part (a), the map B 7→ −A−1BA−1. Using just algebraic manipulation (e.g. the

identity X = C−1(CXA)A−1 for X ∈ Mn(R) and A,C ∈ GL(n,R)) and the submulti-
plicativity of the operator norm, show that if B ∈ Mn(R) and A + B is invertible,
then ∥ι(A+B)− ι(A)− T (B)∥ ≤ ∥(A+B)−1∥ ∥A−1∥2 ∥B∥2.

(e) Show that if A and c are as in part (b), then ∥A−1∥ ≤ 1
c
.

Note: Since 1 = ∥I∥ = ∥AA−1∥ ≤ ∥A∥ ∥A−1∥, we have the simple lower bound

∥A−1∥ ≥ ∥A∥−1. But there is no general upper bound on ∥A−1∥ in terms of ∥A∥.

(f) Use part (e) to show that your work in part (c) actually gives you, for fixed
A, a uniform-in-B upper bound on ∥(A+B)−1∥ if ∥B∥ is sufficiently small.

(g) Now show that if A ∈ GL(n,R) then limB→0
∥ι(A+B)−ι(A)−T (B)∥

∥B∥ = 0, hence

that ι is differentiable at A, with derivative given by Dι|A(B) = −A−1BA−1.

9. Extend the result of problem 6 to negative integral exponents. (For A ∈ GL(n,R)
and m ≥ 1, A−m is defined to be (A−1)m.)

10. The determinant function det : Mn(R) → R is a polynomial in n2 variables, so it
is certainly C1 (in fact C∞). There are several ways to compute its derivative. The
steps below constitute a method that involves little computation but a bit of thought.

(a) Let I ∈ Mn(R) be the identity matrix and let B ∈ Mn(R). Compute
(D(det))|I(B), and express the answer as a simple invariant of the matrix B. (Note

that since det is differentiable, its derivative at any point can be computed from directional

derivatives: D(det)|A(B) = (DB det)|A.)

(b) Let A ∈ GL(n,R), B ∈ Mn(R). Compute (D(det))|A(B). (Hint: use (a).)
Re-express your result as a formula for the derivative (or directional derivatives) of
the function log | det |.
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(c) Use the density statement in problem 7 to extend the formula for DA(det) from
A ∈ GL(n,R) to A ∈ Mn(R). The answer can be rewritten in terms of the “cofactor”
matrix cof(A) that arises in computing the inverse of a matrix. (Recall that if A is
invertible, then A−1 = 1

det(A)
cof(A), or else the transpose of this, depending on your

definition of cof(A).)
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