Differential Geometry—MTG 6256—Fall 2025
Problem Set 4
Due-date: Wednesday 12/3/25

Required problems (to be handed in): 2bc, 3bc, 4bdef. In doing any of these
problems, you may assume the results of all earlier problems (optional or required).

Optional problems: All the ones that are not required.

Throughout this assignment, “manifold” means “paracompact, Hausdorff mani-
fold”.

Some problems in this assignment were assigned at the blackboard and/or were
partially done in class.

1. Recall that a topological space X is arcwise connected (or path-connected) if for all
p,q € X, there exists a continuous map  : [0,1] — X with 4(0) = p and (1) = g.
It is easily shown that every arcwise connected space is connected (a separation of
X would lead to a separation of [0, 1]), but there are connected spaces that are not
arcwise connected (the famous example being the “topologist’s sine curve”).

Show that a manifold M is connected if and only if M is arcwise connected. (You
may assume the “arcwise connected = connected” half of this iff; you need only show
the “connected implies arcwise connected” half.)

Note: This problem was inserted here because its result can be used to simplify ar-
guments in some later problem-parts involving connectedness. However, most of those
problem-parts can be done without any reliance on arcwise-connectedness.

2. Let n > 1, let M and N be oriented n-dimensional manifolds, and let
F : N — M be a smooth map. Recall that at any point of M or N, a basis of
the tangent space is called either positively oriented or negatively oriented, according
to whether basis is or is not in the orientation class defined that manifold’s given
orientation.

(a) Let p € N and suppose that the derivative F,, : T,N — Tp,) M is an isomor-
phism. Show that if F, carries some positively oriented basis of T,,N to a positively
oriented basis of T, M, then F,, carries every positively oriented basis of T,N to a
positively oriented basis of T, M. Similarly, show that if F, carries some positively
oriented basis of T,,N to a negatively oriented basis of T M, then F,, does that to
every positively oriented basis of T),N.

Part (a) shows that the following definition is unambiguous.

Definition. For a given p € N, we say that F' is orientation-preserving



at p (respectively, orientation-reversing at p) if F,, carries positively ori-
ented bases of T),N to positively (respectively, negatively) oriented bases of
TreyM. We say that F is orientation-preserving (respectively, orientation-
reversing) if F' is orientation-preserving at every p € M (respectively,
orientation-reversing at every p € M).

Note that for F' to be either orientation-preserving or orientation-reversing at a point
p, the map F,, must be an isomorphism. Hence the only maps N — M that can
possibly be orientation-preserving or orientiation-reversing (globally) are local diffeo-
morphisms.

(b) For any p € N or ¢ € M, recall that the given manifold-orientations also define
what we mean by positive and negative elements of the 1-dimensional vector space
A" T;N or \"TyM. Show that F is orientation-preserving at p € N (respectively,
orientation-reversing at p € N) if and only if the pullback map F* : A" T}’;(p)M —
A"T;N carries some, and hence any, positive element of A" T ;(p)M to a positive
(respectively, negative) element of A" T N.

(c) Assume that N is connected and that F' : N — M is a diffeomorphism.
(i) Show that F' is either orientation-preserving or orientation-reversing. (ii) Let
w € QM) (the space of n-forms of compact support). Show that F*w has compact
support (ensuring that [, F*w is defined), and prove the following:

/F*w::t/ w,
N M

with the plus sign if F' preserves orientation, and the minus sign if F' reverses orien-
tation. (This fact is called invariance of the integral under diffeomorphism.)

3. Let M and M be manifolds of equal dimension, and assume that F' : M — M is
a submersion. Note that, for dimensional reasons (and using a previous homework
problem), “F is a submersion” is equivalent to “F is a local diffeomorphism.”

(a) Show that an orientation of M (if one exists) induces, via F, an orientation
on M. (Hence if M is orientable, so is M. )

For the remaining parts of this problem, assume that M is compact and
that M is connected. Since F' is already assumed to be a submersion, a previous
homework problem shows that F is surjective. Hence M (= F(M)) is compact as
well.

(b) Prove that F'is a smooth covering map; i.e. that for all p € M there exists an
open neighborhood U of p such that F'~*(U) is a disjoint union of sets U; for which
Flg - U; — U is a diffcomorphism. (Here i runs over some index set Z(p), possibly
depending on p.)



(c) Prove that for all p € M, the set F~!(p) is finite. (Recall that “F~'(p)” is
common, though imprecise, notation for F~({p}).)

(d) Prove that the cardinality of the finite set F~!(p) is independent of p. This
finite common value—the number of points in the pre-image of any p € M—is called
the degree of F as a covering map.! (More generally, we may use this definition of
degree of a covering map F' any time the cardinality of F~!(p) is independent of p,
whether or not M is compact or M is connected.) Below, we use the notation deg F’
for this degree.

(e) Assume that M is oriented, and give M the induced orientation. Show that
for all w € Q"(M),
/ Frw = (degF)/ w.
M M

(The compactness of M and M ensures that both integrals are defined.)

4. Let M be an n-dimensional | manifold, n > 1. We can construct a manifold called
the orientation double-cover M of M as follows. For each p € M let Orn(p) denote
the set of orientations of T,M, a two-element set. Given o € Orn(p), we let —o
denote the other orientation. As a set, let M = U pear Orn(p). There is a natural
two-to-one map 7 : M — M carrying both elements of Orn(p) to p. We give M the
topology induced by this map 7 (i.e. a set U C M is declared to be open if and only
if 7(U) is open).

It can be shown that every manifold has as an atlas {(U,, @)} for which all the
sets U, and nonempty intersections U, (1Ug are connected.? Let {(Uy, ¢a)}aca be
such an atlas for M. Then, for each o € A, the set 7#~'(U,) has two connected
components, which are distinguished from each other as follows. For p € U, let o,(p)
be the orientation of 7),M pulled back by the map ¢, : U, — R", where R" is given
its standard orientation. Each p € 7~(U,,) is, by definition, an orientation of Ty, M;
hence p = +0,(7(p)) (where “+¢” means o). The sign in this formula is constant on
cach connected component of 7=1(U,) (why?). We define U, , to be the component
on which p = o, (7(p)), and U, _ to be the component on which p = —o4(7(p)). We
define corresponding chart-maps ¢, 4 : Uai — R"™ as follows. Let r : R® — R"
be the reflection (z!,2?,...2") — (—2',2% ... 2"). Then we define @, = @, 0T,

'In this coarse usage of the word “degree” for covering maps, the degree is always positive. For
more general maps between compact, oriented manifolds of equal dimension, there is a notion of
degree in which the degree can be positive, negative, or zero. For example, if M = M = S' = unit
circle in C, for 0 # n € Z the degree of the map z — 2", as defined in this problem, is |n|. But
for these maps it makes sense to refine the definition of degree, and even include the case n = 0,
declaring the degree of z — 2™ to be n whether this integer is positive, negative, or zero. This refined
degree then classifies homotopy classes of maps S' — S'; every continuous map is homotopic to
z +— 2" for a unique n € Z.

2It takes some non-trivial work to show this. Just assume it’s true for now.



Pa,— =T 0PuOT.

(a) Let A = A x {+,—}, an index set for the pairs (U, Pa.+) constructed
above. Show that {Us, Pa}acs is an atlas for M, hence that M is a manifold. (You
may assume that paracompactness and Hausdorffness of M imply that M also has these
properties. This is not hard to show, but your time would be better spent on other problems
in this assignment.)

(b) Show that the atlas {Us, Ps}sc 4 is oriented (whether or not M is orientable!).
Hence M is orientable; even better, the construction above gives it a canonical ori-
entation, the one induced by this atlas. (It can be shown that this orientation is

independent of the atlas of M that we started with, but I'm not asking you to show
that.)

(c) Show that  : M — Misa (smooth), degree-two covering map.

Discussion to set up part (d). From the definition of “covering map”, it is
easily shown that M has the following “path-lifting property”: given any continuous
map v : [0,1] — M, and any p € 7 '(v(0)), there exists a unique continuous map
A :[0,1] — M with 7(0) = p. (You may assume this, but you should be able to prove
it on your own, using nothing about manifolds other than that they are topological
spaces. The degree of the cover, or even whether the cover has finite degree, is also
irrelevant. The same argument works just as easily for any covering space of any
topological space.) For general covering spaces, such a curve 7 is called a [lift of ;
in the context of the orientation double-cover M —5 M we may call such a lift an
“orientation of M along ~”.

(d) Assume M is connected. Show that M is orientable if and only if M is
not connected. (Thus, if we start with a non-orientable, connected M, we obtain a
counterexample to the [false] converse of the parenthetic conclusion of problem 3(a).)

For the case in which M is orientable, show that M is diffeomorphic to M X Zs, the
disjoint union of two “copies” of M.

(e) Since every point in M is an orientation of a vector space, there is a natural
map 7 : M — M defined by 7(0) = —o. (This map is called an involution—a term
you may recall from group theory—because 7 o 7 is the identity map but 7 itself is
not.) Show that 7 is an orientation-reversing map (where M is given the canonical
orientation defined in part (b)).

(f) Since M is oriented, we may integrate any compactly supported n-form over
M. Show that if w € Q"(M) is compactly supported, then so is 7*w, and

/M W = 0. (0.1)



Hint for showing (0.1) quickly and elegantly: part (e).

5. Let M be a manifold and suppose that F' : M — M is a smooth involution with
no fixed-points. (Thus F o F' = idy,, and for every p € M, F(p) # p.) Let ~ be the
equivalence relation on M generated by declaring p ~ F(p). (Thus, the equivalence
class of p is the set {p, F(p)}.) Let M = J\A/[// ~, with the quotient topology (if you're
unsure what this topology is, see p. 5 of the topology glossary linked to the class home
page).

(a) Show that for every manifold N, every smooth involution 7 : N — N is a
diffeomorphism (whether or not 7 has any fixed points).

(b) Show that each p € M has an open neighborhood U such that U N F(U) = 0.

(c) Show that the quotient-construction defining M determines, canonically, a
smooth structure on M.

_ (Idea: Show that M has an atlas A such that the domain U of every chart in
A satisfies U N F(U) = (). Use such an atlas to construct an atlas A of M. Show
that if we apply this construction to any two atlases of M [within the given maximal
atlas of M ] that have this “U N F(U) = ()" property, the atlases of M we obtain are

compatible, and hence determine the same smooth structure on M. The last step is
necessary since atlases A of the type above are not unique.)

For the remainder of this problem, we regard M (the quotient space
defined in the problem setup) as a manifold with the above natural smooth
structure.

(d) Assume that M is orientable.

(i) Show that if F' is orientation-preserving, then M is orientable.

(ii) Show that if F' is orientation-reversing and M s connected, then M is not
orientable. (Note that to show that M is not orientable, it’s not sufficient to
produce a non-oriented atlas! Every manifold, whether or not orientable, has
non-oriented atlases.)

Hint: Choose any p € M. If M is connected, problem 2 assures us that
there is a path in M from p to F(p). Consider the image of this curve under
the projection M — M ; note that the curve in M is a lift of the curve in M.
Show that assuming M is oriented leads to a contradiction.

6. Let n > 1. For each p € R"™, let 1, denote the canonical isomorphism
T,R™! — R™*. Recall that the standard orientation of R™™ (as a vector space) is
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the orientation-class of the standard basis of R"*!. Regarding R"™! as a manifold
with a one-chart atlas {(R""!,id)}, we obtain the standard orientation of R"™ (as
a manifold). (Equivalently, the latter orientation is defined at each p € R"*! by
using the isomorphism ¢, to pull back the standard vector-space orientation of R
to an orientation of the vector space T,R"™.) These orientations define what we will
mean by “positively-oriented” and “negatively oriented” mean for bases of R"™! and
T,R".

The standard inner product on R™ is the dot-product. At each p € R"*!, the
isomorphism ¢, pulls this inner product back to an inner product on T,R"**. Below,
these inner products on R"* and T,R""! are intended in any reference to norms and
to orthogonality.

As we have seen, the sphere S := {v € R""! : ||v]| = 1} is a submanifold of R" .
Below, for any p € S, we regard T,5™ as a subspace of T,R""! (i.e. we implicitly
identify 7,S™ with j.,(7,5™), where j : S® — R"™! is the inclusion map).

(a) For each p € S™, define N, € T,R"™ by N, = izjl(p). This is the vector that’s
commonly called the outward-pointing unit normal to S™ at p. Justify the words
“unit” and “normal” in this terminology by checking that ||N,|| = 1 and that7,5" is
the orthogonal complement of span(XN,).

(b) Given p € S™ and any basis (eq,...,e,) of T,5", the ordered (n + 1)-tuple
(Np,e1,€2,...,6,) is a basis of T,R"™ (since N, ¢ T,5"), and hence
(tp(Np), tp(e1), .. 1p(en)) is a basis of R™. The standard orientation of T,S™ is de-
fined by declaring the basis(ey, ..., e,) of T,,5™ to be positively oriented if and only if
(tp(Np), tp(€1), - -, tp(en)) is a positively oriented basis of R™*! (as defined in the setup
of this problem). Show that this collection of tangent-space orientations determines
an orientation of S™ (i.e. that the appropriate continuity condition is satisfied).

For the remainder of this problem, let ' : S™ — S™ denote the antipodal
map, i.e the map p — —p. (Note that, for a point p in a general manifold, there is no

“

such thing as “—p”; in defining this notation for p € S™, we are relying on the fact that S™

is a subset of a vector space.)

(c) Check that F is a smooth involution (hence a diffeomorphism) with no fixed-
points.

(d) Show that F' preserves orientation if n is odd, and reverses orientation if n is
even.

For the remainder of this problem, let M = S™/ ~, where the equivalence
relation ~ is the one generated by “p ~ F(p)”, and where M is given the
induced smooth structure (see problem 6(c)).

(e) Show that M is diffeomorphic to the projective space RP" = P(R"™!), as



defined in the first homework assignment.?
(f) Show that M (and therefore RP™) is orientable if and only if n is odd.

(g) Show that S™ “is” (more precisely, is diffeomorphic to) the orientation double-
cover of RP" if and only if n is even. (Part (e) shows that S™ is always some double-
cover of RP", but a general double-cover of a manifold need not be the orientation
double-cover.)

3 Another common definition of RP™ is S™/ ~, of course, but that’s not the definition we used.
You're showing here that the two definitions yield the same manifold, up to diffeomorphism.
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