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Sufficient Conditions for Paracompactness of Manifolds

The purpose of these notes is to examine some relations among some topologi-
cal restrictions that are very often included in definitions of “manifold”, the most
common being constant-dimensionality, Hausdorffness and either second countability
paracompactness. For this reason, we do not include any such restrictions in our defi-
nition of “manifold”. In these notes, a topological manifold is simply a pair consisting
of a topological space M and a C° maximal atlas on M.

Definition 1 Let X be a topological space.

1. Given two open covers U = {Uy }aca, V = {Vs}pep of X, we say that V refines
(or is a refinement of) U if for all 5 € B, there exists o € A such that Vs C U,.

2. A collection of subsets U = {U, }aca of X is called locally finite if for all x € X,
there exists an open neighborhood W of x intersecting U,, for only finitely many
a € A

3. X is paracompact if every open cover of X admits a locally finite refinement.

Remark 2 (1) Every subcover of an open cover U is a refinement of ¢ (hence “com-
pact” implies “paracompact”), but a refinement of & need not be a subcover of U.
(2) If a cover V of X is locally finite, then for all z € X, only finitely many elements
of V contain z. The converse is false (i.e. “pointwise finite” does not imply “locally
finite”).

Since paracompactness is not the most transparent condition in the world, and
since its definition does not make it obvious how to verify that a space is paracompact,
we give in these notes some conditions that suffice for paracompactness of a finite-
dimensional Hausdorff manifold.

Henceforth in these notes, “manifold” always means “topological, finite-dimensional
manifold”. When we want to make statements about smooth manifolds, we will say
so explicitly.

The three conditions we consider for a manifold M are

e M is o-compact (see below).
e ) admits a countable atlas.

e M is second countable (i.e. M has a countable basis of open sets).



We will see that for a Hausdorff manifold, these three conditions are equivalent,
and that each implies paracompactness. (However, these conditions are not necessary
for paracompactness.)

Recall that a topological space is o-compact if it is a countable union of compact
subsets. (Here and below, “countable” means “finite or countably infinite”. Thus
any compact space is o-compact.)

Let X be a topological space. We say that a sequence {K;}°, of subsets of X
ezhausts X (or is an ezhaustion of X) if K1 C Ko C K3 C ... and 2, K; = X. We
make the following observations:

o If X = U7, K; for some countable collection of compact sets Ki, then the
sequence of compact sets K; defined by K; = Uji:1 K; is an exhaustion of
X. Thus a o-compact space always admits an exhaustion by compact subsets.
Conversely, an exhaustion of X by compact sets exhibits X as a countable union
of compact sets. Thus a topological space is o-compact if and only if it admits
an exhaustion by compact sets.

o If {K;}, is an exhaustion X, then any subsequence of {K;} exhausts X as
well.

e Our definition of exhaustion does not require K; to be a propersubset of K;,1. So
if { K;} is an exhaustion of X, and K; = X for some i, then K; = X forall j > i,
without violating anything in the definition of “exhaustion”. In particular, we
do not need to modify our notation for, or definition of, “exhaustion of X by

oo N

compact sets {K;}2,” if X is compact and equal to one of the K.

Some notation we will use:

1. For sets Y, Z we write Y — Z rather than Y \ Z for the set-difference {y € Y |

y ¢z}

2. When a topological space X is understood from context, and Z C X, we write

e int(Z) for the interior of Z,
e Z for the closure of Z, and

e 7' for the complement of Z in X.

3. Q. denotes the set of positive rational numbers.

4. Q" is regarded as a subset of R", namely the set of points in R™ with rational
coordinates.



5. B.(z) C R"™ denotes the open ball of radius r centered at x.

6. To denote an indexed, countable set of objects, in order to allow both finite and
infinite sets, we use the notation “{object, };c;cn” to indicate that the index set
I may or may not be the whole set of natural numbers.

The proposition below is motivated by the example X = R", K; = closed ball of
radius ¢ centered at the origin. The reader may find it helpful to draw this picture to
follow the proof.

Proposition 3 Let X be a Hausdorff topological space for which there is an ex-
haustion by a collection {K;}2, of compact subsets of X with the property that
K; Cint(K;11) for alli > 1. Then X is paracompact.

Proof: Define K; = () for ¢ < 0. Then for i > 1, let C; = K; — int(K;_;) and
W; = int(K;41) — K;_o. Each W; is open (because in a Hausdorff space, compact sets
are closed), and for j > 1, |J_, Wi = int(K;y,) D K;. Hence {W;}32, is an open
cover of X. Note also that (J._, C; = K, so [J, C; = X as well.

Now let U = {U, }aca be an arbitrary open cover of X. For («,i) € A x N, define
Ui = U, W,. For i € N define U; = {Us;}aca. Then {U,,;}acaien is an open
cover of X that refines U, and for each 7« > 1, U4; is an open cover of W;.

For each i > 1, C; is a closed subset of a compact set, hence compact. In addition,

C; = Kzﬂ (int(Ki_l))' - int(KiH) ﬂKZ{_Q =W;.

Hence the open cover U; of W; also covers Cj;, so there is a finite subcollection
Vi, .., Vin, that covers C;. Since the C; cover X, the collection V = {V, ; hien1<j<n;
is an open cover of X and a refinement of &/. To complete the proof, it suffices to
show that V is locally finite.

Let zp € X, and let (i, jo) be such that x € V; ;,. Then x € W;,. Observe that
Wi, MW, = 0 for i > iy + 3. Since Vi; € Wi, none of the sets V; ; with ¢ > 45 + 3
can intersect V, j,. Thus the neighborhood V; ;, of x intersects V; ; for only finitely
many (7,7). Therefore the cover V of X is locally finite.

Corollary 4 For all n, R™ is paracompact.

Proof: The hypotheses of Proposition 3 are satisfied if we take K; to be the closed
ball of radius ¢ centered at the origin.

In fact, every metric space (hence any subset of R™, with the induced metric) is
paracompact, but we will not give a proof here.

Below, “atlas of well-defined dimension” means that all charts in the atlas have
the same dimension (guaranteed if M is connected).
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Lemma 5 Let M be a manifold with a countable atlas of well-defined dimension.
Then M is o-compact and admits an exhaustion by a collection {K;}52, of compact
subsets of M with the property that K; C int(K;1) for all i > 1.

Proof: Let n = dim(M) and let {(U;, ¢;) }iercn be a countable atlas on M. For
(q,7) € Q" x Qu, let Vi, = ¢; (6:(U;) N By(q)), and define ¢;,, = &; Vig,- Then
{(Vigws bigr) | (iyq,7) € IXQ"X Q4 Vigr # 0} is another countable atlas on M. Let
{(W;,%;)}jen be an enumeration of this atlas (given by choosing a 1-1 correspondence
between {(7,q,7) € I X Q" X Q4,V;4r # 0} and N).

For each j € N, v;(W;) is an open ball of finite radius, hence of compact closure
contained in ¢;(U;) for some . Hence the closure WJ is also compact, being the image
of the compact set 1;(W;) under ¢; " for some i.

Fori > 1, let C; = UJZ:1WJ Then {C;}$°, is an exhaustion of M by compact
sets, so M is o-compact. In general C; will not be contained in the interior of C;,1,
but we will see next that there is a subsequence of {C;} with the desired property.

Recursively define a subsequence of {C;} as follows:

1. Let Kl = Cl.

2. For a given ¢ € N, assume K; = C}, for some j; € N. The collection {W;} is an
open cover of M, hence of K;. Therefore we may choose a finite sub-collection
Wii, ..., Wik, that covers K;. Let A; = Uf;l W, j, an open set in M containing
K;.

Since A; is a finite union of sets in the collection {W;}, we have A; C C;
for some integer j;41 > j;. Let Kipy = Cj Then K; C A; C int(Kyq).
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Any sequence { K} constructed this way is a subsequence of the exhaustion {C;} of

M, hence is an exhaustion of M by compact sets, and moreover satisfies the condition
K; Cint(K;q) foralli >1. W

Corollary 6 Let M be a Hausdorff topological manifold with a countable atlas of
well-defined dimension. Then M is o-compact and paracompact. In particular, any
connected manifold with a countable atlas is paracompact.

Proof: Lemma 5 plus Proposition 3. W

Part of the conclusion of Lemma 5 is that, for a Hausdorff manifold, “has a
countable atlas” implies o-compact. The converse is also true (even without assuming
Hausdorffness):

Lemma 7 Let M be a o-compact manifold. Then M admits a countable atlas.



Proof: Let {K;}3°, be an exhaustion of M by compact sets, and let {(Uy, ¢q) taca
be an arbitrary atlas on M. For each i, the collection {U,},ca is an open cover of
K, so a finite subcollection Uy 1, - . - Uakycovers K;. Then {(Uag ), Patij)) | 1 <
i <o00,1<j<k}isacountable atlason M. [l

Although manifolds with connected components of different dimensions are rarely
of interest, for the sake of shortening the statement of Corollary 6 we show next that
the “well-defined dimension” condition can be removed.

Lemma 8 Let X be a topological space. Suppose that X is the disjoint union of open
sets X, (a running over some index set A), each of which is paracompact. Then X
18 paracompact.

Proof: Let U = {Us}gep be an open cover of X. For (a,f) € A x B, define
Uap = Xo N Us. For each «, the collection U, = {U, }pep is an open cover of X,
hence has a locally finite refinement {Wy ~}yec,. Then V= {W,, |a € A,y € Cyo}
is a locally finite refinement of /.

Corollary 9 Let M be a Hausdorff topological manifold with a countable atlas. Then
M s paracompact.

Proof: For n > 0, let M™ C M denote the union of all n-dimensional connected
components of M. Then each M"™ is an open subset of M with a countable, n-
dimensional atlas. (If {(U;, ¢;)}icren is a countable atlas on M, then for each n,
{(Ui, ;) | © € I,UNAM™ # 0} is a countable, n-dimensional atlas on M™.) By
Corollary 6 each M™ is paracompact. Then by Lemma 8, M is paracompact. W

Next we consider the third condition listed on p. 1: having a countable basis of
open sets.

Proposition 10 Let M be a topological manifold. Then M has a countable basis of
open sets if and only if M has a countable atlas.

Proof: (i) Assume that M has a countable atlas {(U;, ¢;)}icren. For n > 0, let
M™ be the union of n-dimensional connected components of M. The collection V), of
open sets V;,, constructed in the proof of Lemma 5, where (i,¢,7) € I x Q" x Q4,
is a countable basis of the topology of M°. Then (J>2,V, is a countable basis of the
topology of M.

(ii) Let {V;}ieren be a countable basis of open sets of M. (I will necessarily be
all of N unless dim(M) = 0, but we do not need that fact.) Let {(Ua, ¢a)}aca be an
arbitrary atlas on M. For each «, the open set U, is a union of sets in the basis {V;};

thus U, = UjGJa V; for some set J, C I.



Let J = U,cu Jo- Thus J C N, and for all j € J there exists a € A such that
Vi C U,. For each j € J, select such an a and denote it a(j). Then ., V; =
Uaea Ua = M, so {V}}je; is a countable open cover of M, and {(V}, ¢a(j)lv;) }jes is a

countable atlas on M. I

Assembling what we have shown, we have the following theorem:
Theorem 11 Let M be a Hausdorff manifold. Then the following are equivalent:

1. M is o-compact.
2. M admits a countable atlas.

3. M is second-countable (i.e. M has a countable basis of open sets).
If M satisfies any of these conditions, then M is paracompact.

Proof: This follows from Corollary 6, Lemma 7, and Proposition 10. H

Remark 12 For smooth manifolds, we have an analogous theorem, in which the
hypothesis of Theorem 11 is replaced by “Let M be a smooth Hausdorff manifold”,
and “atlas” means “smooth atlas”. To see that this is true, all we need check is that
our proofs that conditions 1 and 3 in Theorem 11 imply condition 2 still work in
the smooth setting. For each of the proofs “1 = 2” and “3 = 2”7, to obtain
our eventual countable atlas, we took an arbitrary atlas, refined the open cover, and
then took all our chart-maps to be restrictions of the original atlas’ chart-maps to
the smaller sets comprising the refinement. If M is smooth, and we start with an
arbitrary smooth atlas and go through the same procedure, the overlap-maps will
simply be restrictions of the original smooth overlap-maps, hence will be smooth.
Thus the countable atlas we construct is smooth.

The converse of the last statement in Theorem 11 is false, in every dimension.
For example, let A be an uncountable set with the discrete topology. Then S™ x A,
with the induced topology (thus an uncountable disjoint union of copies of the sphere
S™, each of which is a connected component of S™ x A), is a paracompact Hausdorff
manifold but is not o-compact.

However, in practice, naturally occurring manifolds tend to be o-compact; the
author does not know a naturally occurring counterexample.



