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Sufficient Conditions for Paracompactness of Manifolds

The purpose of these notes is to examine some relations among some topologi-
cal restrictions that are very often included in definitions of “manifold”, the most
common being constant-dimensionality, Hausdorffness and either second countability
paracompactness. For this reason, we do not include any such restrictions in our defi-
nition of “manifold”. In these notes, a topological manifold is simply a pair consisting
of a topological space M and a C0 maximal atlas on M .

Definition 1 Let X be a topological space.

1. Given two open covers U = {Uα}α∈A,V = {Vβ}β∈B of X, we say that V refines
(or is a refinement of) U if for all β ∈ B, there exists α ∈ A such that Vβ ⊂ Uα.

2. A collection of subsets U = {Uα}α∈A of X is called locally finite if for all x ∈ X,
there exists an open neighborhoodW of x intersecting Uα for only finitely many
α ∈ A.

3. X is paracompact if every open cover of X admits a locally finite refinement.

Remark 2 (1) Every subcover of an open cover U is a refinement of U (hence “com-
pact” implies “paracompact”), but a refinement of U need not be a subcover of U .
(2) If a cover V of X is locally finite, then for all x ∈ X, only finitely many elements
of V contain x. The converse is false (i.e. “pointwise finite” does not imply “locally
finite”).

Since paracompactness is not the most transparent condition in the world, and
since its definition does not make it obvious how to verify that a space is paracompact,
we give in these notes some conditions that suffice for paracompactness of a finite-
dimensional Hausdorff manifold.

Henceforth in these notes, “manifold” always means “topological, finite-dimensional
manifold”. When we want to make statements about smooth manifolds, we will say
so explicitly.

The three conditions we consider for a manifold M are

� M is σ-compact (see below).

� M admits a countable atlas.

� M is second countable (i.e. M has a countable basis of open sets).

1



We will see that for a Hausdorff manifold, these three conditions are equivalent,
and that each implies paracompactness. (However, these conditions are not necessary
for paracompactness.)

Recall that a topological space is σ-compact if it is a countable union of compact
subsets. (Here and below, “countable” means “finite or countably infinite”. Thus
any compact space is σ-compact.)

Let X be a topological space. We say that a sequence {Ki}∞i=1 of subsets of X
exhausts X (or is an exhaustion of X) if K1 ⊂ K2 ⊂ K3 ⊂ . . . and

⋃∞
i=1Ki = X. We

make the following observations:

� If X =
⋃∞

i=1 K̂i for some countable collection of compact sets K̂i, then the

sequence of compact sets Ki defined by Ki =
⋃ i

j=1 K̂i is an exhaustion of
X. Thus a σ-compact space always admits an exhaustion by compact subsets.
Conversely, an exhaustion of X by compact sets exhibits X as a countable union
of compact sets. Thus a topological space is σ-compact if and only if it admits
an exhaustion by compact sets.

� If {Ki}∞i=1 is an exhaustion X, then any subsequence of {Ki} exhausts X as
well.

� Our definition of exhaustion does not requireKi to be a proper subset ofKi+1. So
if {Ki} is an exhaustion of X, and Ki = X for some i, then Kj = X for all j > i,
without violating anything in the definition of “exhaustion”. In particular, we
do not need to modify our notation for, or definition of, “exhaustion of X by
compact sets {Ki}∞i=1” if X is compact and equal to one of the Ki.

Some notation we will use:

1. For sets Y, Z we write Y − Z rather than Y \ Z for the set-difference {y ∈ Y |
y /∈ Z}.

2. When a topological space X is understood from context, and Z ⊂ X, we write

� int(Z) for the interior of Z,

� Z for the closure of Z, and

� Z ′ for the complement of Z in X.

3. Q+ denotes the set of positive rational numbers.

4. Qn is regarded as a subset of Rn, namely the set of points in Rn with rational
coordinates.
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5. Br(x) ⊂ Rn denotes the open ball of radius r centered at x.

6. To denote an indexed, countable set of objects, in order to allow both finite and
infinite sets, we use the notation “{objecti}i∈I⊂N” to indicate that the index set
I may or may not be the whole set of natural numbers.

The proposition below is motivated by the example X = Rn, Ki = closed ball of
radius i centered at the origin. The reader may find it helpful to draw this picture to
follow the proof.

Proposition 3 Let X be a Hausdorff topological space for which there is an ex-
haustion by a collection {Ki}∞i=1 of compact subsets of X with the property that
Ki ⊂ int(Ki+1) for all i ≥ 1. Then X is paracompact.

Proof: Define Ki = ∅ for i ≤ 0. Then for i ≥ 1, let Ci = Ki − int(Ki−1) and
Wi = int(Ki+1)−Ki−2. Each Wi is open (because in a Hausdorff space, compact sets
are closed), and for j ≥ 1,

⋃j
i=1Wi = int(Kj+1) ⊃ Kj. Hence {Wi}∞i=1 is an open

cover of X. Note also that
⋃j

i=1Ci = Kj, so
⋃∞

i=1Ci = X as well.
Now let U = {Uα}α∈A be an arbitrary open cover of X. For (α, i) ∈ A×N, define

Uα,i = Uα

⋂
Wi. For i ∈ N define Ui = {Uα,i}α∈A. Then {Uα,i}α∈A,i∈N is an open

cover of X that refines U , and for each i ≥ 1, Ui is an open cover of Wi.
For each i ≥ 1, Ci is a closed subset of a compact set, hence compact. In addition,

Ci = Ki

⋂
(int(Ki−1))

′ ⊂ int(Ki+1)
⋂
K ′

i−2 = Wi.

Hence the open cover Ui of Wi also covers Ci, so there is a finite subcollection
Vi,1, . . . , Vi,ni

that covers Ci. Since the Ci cover X, the collection V = {Vi,j}i∈N,1≤j≤ni

is an open cover of X and a refinement of U . To complete the proof, it suffices to
show that V is locally finite.

Let x0 ∈ X, and let (i0, j0) be such that x ∈ Vi0,j0 . Then x ∈ Wi0 . Observe that
Wi0

⋂
Wi = ∅ for i ≥ i0 + 3. Since Vi,j ⊂ Wi, none of the sets Vi,j with i ≥ i0 + 3

can intersect Vi0,j0 . Thus the neighborhood Vi0,j0 of x0 intersects Vi,j for only finitely
many (i, j). Therefore the cover V of X is locally finite.

Corollary 4 For all n, Rn is paracompact.

Proof: The hypotheses of Proposition 3 are satisfied if we take Ki to be the closed
ball of radius i centered at the origin.

In fact, every metric space (hence any subset of Rn, with the induced metric) is
paracompact, but we will not give a proof here.

Below, “atlas of well-defined dimension” means that all charts in the atlas have
the same dimension (guaranteed if M is connected).
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Lemma 5 Let M be a manifold with a countable atlas of well-defined dimension.
Then M is σ-compact and admits an exhaustion by a collection {Ki}∞i=1 of compact
subsets of M with the property that Ki ⊂ int(Ki+1) for all i ≥ 1.

Proof: Let n = dim(M) and let {(Ui, ϕi)}i∈I⊂N be a countable atlas on M . For
(q, r) ∈ Qn × Q+, let Vi,q,r = ϕ−1

i (ϕi(Ui)
⋂
Br(q)), and define ϕi,q,r = ϕi|Vi,q,r

. Then
{(Vi,q,r, ϕi,q,r) | (i, q, r) ∈ I×Qn×Q+, Vi,q,r ̸= ∅} is another countable atlas onM . Let
{(Wj, ψj)}j∈N be an enumeration of this atlas (given by choosing a 1-1 correspondence
between {(i, q, r) ∈ I ×Qn ×Q+, Vi,q,r ̸= ∅} and N).

For each j ∈ N, ψj(Wj) is an open ball of finite radius, hence of compact closure
contained in ϕi(Ui) for some i. Hence the closureWj is also compact, being the image

of the compact set ψj(Wj) under ϕ
−1
i for some i.

For i ≥ 1, let Ci =
⋃ i

j=1Wj. Then {Ci}∞i=1 is an exhaustion of M by compact
sets, so M is σ-compact. In general Ci will not be contained in the interior of Ci+1,
but we will see next that there is a subsequence of {Ci} with the desired property.

Recursively define a subsequence of {Ci} as follows:

1. Let K1 = C1.

2. For a given i ∈ N, assume Ki = Cji for some ji ∈ N. The collection {Wj} is an
open cover of M , hence of Ki. Therefore we may choose a finite sub-collection
Wi,1, . . . ,Wi,ki that covers Ki. Let Ai =

⋃ki
j=1Wi,j, an open set in M containing

Ki.

Since Ai is a finite union of sets in the collection {Wj}, we have Ai ⊂ Cji+1

for some integer ji+1 > ji. Let Ki+1 = Cji+1
. Then Ki ⊂ Ai ⊂ int(Ki+1).

Any sequence {Ki} constructed this way is a subsequence of the exhaustion {Ci} of
M , hence is an exhaustion ofM by compact sets, and moreover satisfies the condition
Ki ⊂ int(Ki+1) for all i ≥ 1.

Corollary 6 Let M be a Hausdorff topological manifold with a countable atlas of
well-defined dimension. Then M is σ-compact and paracompact. In particular, any
connected manifold with a countable atlas is paracompact.

Proof: Lemma 5 plus Proposition 3.

Part of the conclusion of Lemma 5 is that, for a Hausdorff manifold, “has a
countable atlas” implies σ-compact. The converse is also true (even without assuming
Hausdorffness):

Lemma 7 Let M be a σ-compact manifold. Then M admits a countable atlas.
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Proof: Let {Ki}∞i=1 be an exhaustion of M by compact sets, and let {(Uα, ϕα)}α∈A
be an arbitrary atlas on M . For each i, the collection {Uα}α∈A is an open cover of
Ki, so a finite subcollection Uα(i,1), . . . Uα(i,ki)covers Ki. Then {(Uα(i,j), ϕα(i,j)) | 1 ≤
i <∞, 1 ≤ j < ki} is a countable atlas on M .

Although manifolds with connected components of different dimensions are rarely
of interest, for the sake of shortening the statement of Corollary 6 we show next that
the “well-defined dimension” condition can be removed.

Lemma 8 Let X be a topological space. Suppose that X is the disjoint union of open
sets Xα (α running over some index set A), each of which is paracompact. Then X
is paracompact.

Proof: Let U = {Uβ}β∈B be an open cover of X. For (α, β) ∈ A × B, define
Uα,β = Xα

⋂
Uβ. For each α, the collection Uα = {Uα,β}β∈B is an open cover of Xα,

hence has a locally finite refinement {Wα,γ}γ∈Cα . Then V := {Wα,γ | α ∈ A, γ ∈ Cα}
is a locally finite refinement of U .

Corollary 9 Let M be a Hausdorff topological manifold with a countable atlas. Then
M is paracompact.

Proof: For n ≥ 0, let Mn ⊂ M denote the union of all n-dimensional connected
components of M . Then each Mn is an open subset of M with a countable, n-
dimensional atlas. (If {(Ui, ϕi)}i∈I⊂N is a countable atlas on M , then for each n,
{(Ui, ϕi) | i ∈ I, Ui

⋂
Mn ̸= ∅} is a countable, n-dimensional atlas on Mn.) By

Corollary 6 each Mn is paracompact. Then by Lemma 8, M is paracompact.

Next we consider the third condition listed on p. 1: having a countable basis of
open sets.

Proposition 10 Let M be a topological manifold. Then M has a countable basis of
open sets if and only if M has a countable atlas.

Proof: (i) Assume that M has a countable atlas {(Ui, ϕi)}i∈I⊂N. For n ≥ 0, let
Mn be the union of n-dimensional connected components of M . The collection Vn of
open sets Vi,q,r constructed in the proof of Lemma 5, where (i, q, r) ∈ I ×Qn ×Q+,
is a countable basis of the topology of M0. Then

⋃∞
n=0 Vn is a countable basis of the

topology of M .

(ii) Let {Vi}i∈I⊂N be a countable basis of open sets of M . (I will necessarily be
all of N unless dim(M) = 0, but we do not need that fact.) Let {(Uα, ϕα)}α∈A be an
arbitrary atlas on M . For each α, the open set Uα is a union of sets in the basis {Vi};
thus Uα =

⋃
j∈Jα Vj for some set Jα ⊂ I.
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Let J =
⋃

α∈A Jα. Thus J ⊂ N, and for all j ∈ J there exists α ∈ A such that
Vj ⊂ Uα. For each j ∈ J , select such an α and denote it α(j). Then

⋃
j∈J Vj =⋃

α∈A Uα =M , so {Vj}j∈J is a countable open cover of M , and {(Vj, ϕα(j)|Vj
)}j∈J is a

countable atlas on M .

Assembling what we have shown, we have the following theorem:

Theorem 11 Let M be a Hausdorff manifold. Then the following are equivalent:

1. M is σ-compact.

2. M admits a countable atlas.

3. M is second-countable (i.e. M has a countable basis of open sets).

If M satisfies any of these conditions, then M is paracompact.

Proof: This follows from Corollary 6, Lemma 7, and Proposition 10.

Remark 12 For smooth manifolds, we have an analogous theorem, in which the
hypothesis of Theorem 11 is replaced by “Let M be a smooth Hausdorff manifold”,
and “atlas” means “smooth atlas”. To see that this is true, all we need check is that
our proofs that conditions 1 and 3 in Theorem 11 imply condition 2 still work in
the smooth setting. For each of the proofs “1 =⇒ 2” and “3 =⇒ 2”, to obtain
our eventual countable atlas, we took an arbitrary atlas, refined the open cover, and
then took all our chart-maps to be restrictions of the original atlas’ chart-maps to
the smaller sets comprising the refinement. If M is smooth, and we start with an
arbitrary smooth atlas and go through the same procedure, the overlap-maps will
simply be restrictions of the original smooth overlap-maps, hence will be smooth.
Thus the countable atlas we construct is smooth.

The converse of the last statement in Theorem 11 is false, in every dimension.
For example, let A be an uncountable set with the discrete topology. Then Sn × A,
with the induced topology (thus an uncountable disjoint union of copies of the sphere
Sn, each of which is a connected component of Sn ×A), is a paracompact Hausdorff
manifold but is not σ-compact.

However, in practice, naturally occurring manifolds tend to be σ-compact; the
author does not know a naturally occurring counterexample.
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