
Differential Geometry—MTG 6256—Fall 1999
Problem Set 2: Introduction to the Calculus of Variations

Later this semester or next semester we will be discussing geodesics on Riemannian
manifolds. Geodesics are paths that minimize arclength among all paths between
two specified points. In essence one analyzes this problem by doing calculus on the
(infinite-dimensional) space of paths, arriving at a differential equation the geodesic
must satisfy. This procedure is an example of the calculus of variations, which this
problem set introduces.

In Lagrangian mechanics one studies “action functionals” of the form

S(f) =
∫ b

a
L(t, f(t), f ′(t)) dt,

where f : [a, b] → Rn (n = 1, 2, or 3) is meant to represent the motion of a particle
between times a and b (usually with the positions f(a) and f(b) fixed), and where
L, the Lagrangian, is a real-valued function which, after plugging in f and f ′, gives
the difference between the kinetic and potential energies associated with the motion
t 7→ f(t). Hamilton’s principle of least action asserts that the physical trajectory of
a particle is one that minimizes S(f) over all f with the given endpoint constraints.
Historically, inventors of this subject realized that at an extremum of such a problem
(called a variational problem), the functional S must be stationary with respect to
small changes in f (dubbed variations, whence the terms “variational problem” and
“calculus of varations”). It was recognized early that this situation was formally
similar to that of finding an extremum of a function of one variable (or finitely many),
but it was not realized for some time that what was being done was not merely similar
to critical-point calculus, but identical to it—once one realizes that the correct home
for f is an appropriate Banach space, and has the right definition of derivative.

The problems below take you through the solution of this variational problem in
the language of calculus on Banach spaces. To simplify the writing, I have assumed
that the motion is one-dimensional and that L has no explicit t-dependence. The
more general situation is no harder, just slightly more cumbersome to write down.

Setup. Let [a, b] be a closed finite interval in R. Recall that the uniform norm
or sup-norm of a function f : [a, b]→ R is defined to be ‖f‖∞ = supt∈[a,b] |f(t)|. For

k ≥ 0, the Ck-norm of a Ck function f is defined to be

‖f‖Ck = ‖f‖∞ + ‖f ′‖∞ + . . .+ ‖f (k)‖∞,

where f (k) denotes the kth Calculus-1-derivative of f (using one-sided derivatives at
the endpoints). Convergence in the sup-norm (or C0-norm) is identical to uniform
convergence. Recall from your undergraduate advanced calculus class that (1) the
pointwise limit of a uniformly convergent sequence of continuous functions is contin-
uous, and (2) if {fn} is a sequence of functions that converges at at least one point
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and for which {f ′n} converges uniformly on [a, b], then {fn} converges uniformly on
[a, b] and (lim fn)′(t) = lim(f ′n(t)) for all t ∈ [a, b]. Let Ck([a, b]) denote the space of
Ck real-valued functions on [a, b]. Facts (1) and (2) imply that for k ≥ 0, Ck([a, b])
is complete in the Ck-norm, hence is a Banach space.

1. A critical point of a real-valued differentiable function F defined on some open
subset of a Banach space is a point p for which DpF = 0. Prove relative extrema of
differentiable functions occur only at critical points.

For the remaining problems, an interval [a, b] is fixed.

2. Let L : R2 → R be C∞. (Note: C1 would actually suffice for this problem, and
C2 would suffice for problem 3.) Let ∂1L and ∂2L denote the partial derivatives of L
with respect to its first and second variables (in terms of the notation used in class,

at a point (x, y) ∈ R2 these would be (D
[1]
(x,y)L)(1) and (D

[2]
(x,y)L)(1) respectively).

(a) Define ι : C1([a, b])→ C0([a, b]× C0([a, b]) by ι(f) = (f, f ′). Show that ι is a
continuous linear map, hence C∞. What is Df ι?

(b) Define L : C0([a, b]) × C0([a, b]) → C0([a, b]) by L(f, g)(t) = L(f(t), g(t)).
Compute the directional derivatives of L, and use this to show that L is continuously
differentiable.

(c) Define I : C0([a, b]) → R by I(f) =
∫ b
a f(t) dt. Show that I is a continuous

linear map, hence C∞. What is DfI?

(d) For f ∈ C1([a, b]), define

S(f) =
∫ b

a
L(f(t), f ′(t)) dt.

Note that S(f) = I ◦ L ◦ ι(f). Using the Chain Rule and parts (a)-(c), show that S :
C1([a, b]) → R is C1, and compute the directional derivative (DfS)(h) for arbitrary
f, h ∈ C1.

3. Notation as in problem 2. (a) If f is C2 rather than merely C1, the Chain
Rule implies that d

dt
(∂2L(f(t), f ′(t))) is defined and continuous. Show that for f, h ∈

C2([a, b]),

(DfS)(h) = h(t)∂2L(f, f ′)(t)|t=bt=a +
∫ b

a
(∂1L(f, f ′)(t)− d

dt
∂2L(f, f ′)(t))h(t) dt. (1)

(b) Consider the restriction of S to the space of C2 paths going from a point P
on the real line to a point Q in time interval [a, b] (i.e. we restrict the domain of S
to the set M = {f ∈ C2([a, b]) | f(a) = P, f(b) = Q}). Note that M is a translate
of the vector subspace V = {f ∈ C2([a, b]) | f(a) = 0 = f(b)}; given any f0 ∈ M we
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can write any f ∈ M uniquely in the form f0 + g where g ∈ V . Fix such an f0, and
for g ∈ V define

S̃(g) = S(f0 + g).

Then the constrained minimization problem, minimizing S over the subset M—the
set of paths with the given endpoints—is equivalent to minimizing S̃ over V . Since
convergence in C2 implies pointwise convergence, any the limit f of C2-convergent
sequence of functions in V still has f(a) = 0 = f(b), so V is a closed subset of
C2([a, b]), hence complete. Therefore V, with the C2-norm, is a Banach space. Show
(quickly, using results above) that S̃ is C1 on V , and that (DgS̃)(h) = (Df0+g)S(h).
Since h ∈ V , to what formula does (1) simplify?

(c) Prove that g ∈ V is a critical point of S̃ iff

∂1L(f, f ′)− d

dt
∂2L(f, f ′) ≡ 0, (2)

where f = f0 + g. Equation (2) is known as the Euler-Lagrange equation; physicists
usually write it as

∂L

∂f
− d

dt

∂L

∂f ′
= 0.

The preceding arguments prove that any minimum of the constrained minimization
problem must be a solution of (2). (The converse, of course, is not true in general,
since not every critical point is a minimum.)

3


