
Differential Geometry—MTG 6256—Fall 1999
Problem Set 3

1. Prove that if (M,A) is a connected Ck manifold and k ≥ 1, then all charts in A
have the same dimension.

2. (a) Show that a submanifold of a manifold is itself a manifold. More specifically,
use the definition of “submanifold” to produce an atlas for the submanifold.

(b) Prove that if F : M → N is a smooth map of manifolds and X ⊂ M is a
submanifold, then F |X : X → N (the restriction of F to X) is also a smooth map of
manifolds.

3. If V is a vector space, the projectivization P (V ) is defined to be the set of lines
through the origin in V , with a suitable topology. This applies whether V is a
real or complex vector space; “line through the origin” means the set of real or
complex multiples of a fixed nonzero vector accordingly as V is real or complex.
Alternatively, P (V ) = (V − {0})/ ∼, where the equivalence relation ∼ is defined
by v ∼ w = ⇐⇒ v = tw for some scalar t (real or complex, accordingly), and is
topologized using the quotient topology. (You do not need to know what “quotient
topology” means to do this problem, but you can read about it in the glossary.) If
V = Rn+1 it is convenient to write the typical element of V as x = (x0, x1, . . . xn)
and (if x 6= 0) the corresponding element of P (V ) as [x0, x1, . . . , xn]; similar notation
is used if V = Cn+1 but I ask that you use z instead of x in this case below. P (Rn+1)
is also denoted RP n (real projective space); P (Cn+1) is also denoted CP n (complex
projective space). Real and complex projective spaces can be defined other ways (as
was done in class for RP 2), but the definition in this problem set is more useful for
many purposes.

(a) Let V = Rn+1. For 0 ≤ i ≤ n define open sets Vi ⊂ V − {0} by Vi = {x ∈ V |
xi 6= 0}. Note that if x ∈ Vi, then tx ∈ Vi ∀t 6= 0, and that the collection {Vi} covers
V − {0}. Show that this cover determines a cover {Ui} of P (V ) and that there is a
1-1 correspondence φi : Ui → Rn. Show that {(Ui, φi)} is a C∞ atlas for P (V ), and
hence that RP n is a manifold of dimension n.

(b) Analogously, show that CP n is a manifold of dimension 2n. (Note: there
is such a thing as a complex manifold, and as one might guess, CP n is a complex
n-dimensional manifold. However, the concept is subtler than one might think, and
for us “manifold” will always mean “real manifold” unless otherwise specified.)

(c) Show that CP 1, also called the Riemann sphere, is diffeomorphic to S2.

(d) For both the real and complex cases (a) and (b), show that the quotient map
(or projection) π : V − {0} → P (V ) is smooth.

(e) For V = Cn+1 ∼=R R2n+2, let H be the restriction of the projection π to the
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unit sphere S2n+1 ⊂ R2n+2. Show that H is surjective and smooth. In view of (c)
and the Hopf map defined in class, H : S2n+1 → CP n is called the generalized Hopf
map. (Note: there is a reason Problem 2 was given before Problem 3.)

4. Let f : Rn → Rm be smooth. Prove that the inverse image of a regular value is
either empty or a submanifold of codimension m (i.e. dimension n−m).

5. (Application of problem 4.) Let Symn(R) ⊂ Mn(R) ∼= Rn2
be the subspace

consisting of n × n symmetric matrices. Define F : Mn(R) → Symn(R) by F (A) =
AtA. (In Problem Set 1 we computed DF , but we did not observe at the time that
the image of F , and hence of DAF for all A, lies in the subspace Symn(R).) Let
I ∈ Mn(R) be the identity; note that F−1(I) = {A ∈ Mn(R) | AtA = I}, which is
also known as the orthogonal group O(n). Show that I is a regular value of F , and
hence that O(n) is a submanifold of Mn(R). What is the dimension of O(n)?

Note: O(n) is not connected; it has two connected components, the set SO(n) of
orthogonal matrices of determinant 1, and the set of orthogonal matrices of deter-
minant −1. This example shows that non-connected manifolds can arise naturally in
important examples.

6. The Grassmannian or Grassmann manifold Gk(R
n) is defined to be the set k-

dimensional subspaces of Rn. (This is a generalization of projective space; G1(Rn) =
RP n−1.) To construct an atlas, observe that given any k-plane X through the origin,
any sufficiently close k-plane Y through the origin is the graph of a unique linear
map T : X → X⊥, where X⊥ is the orthogonal complement of X. (Here “sufficiently
close” means that Y

⋂
X⊥ = {0}.) For each k-element subset I = {i1, . . . , ik} of

{1, 2, . . . , n}, let XI be the subspace consisting of all x ∈ Rn all of whose coordinates
other than those in positions i1, . . . , ik vanish. Let VI ⊂ Rn be the complement of
X⊥I .

(a) Show that {VI} is an open cover of Rn − {0} and determines a cover {UI} of
Gk(R

n), analogously to Problem 3a.
(b) Show that there is a 1-1 correspondence φI from UI to the set of linear maps

T : XI → X⊥I , hence with the set of (n− k)× k matrices, hence with Rk(n−k).
(c) Show that the overlap maps φJ ◦ φ−1

I are smooth, and hence that Gk(R
n) is a

manifold of dimension k(n− k).
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