
Differential Geometry—MTG 6256—Fall 1999
Problem Set 7

1. Let X be a vector field on a manifold M . Prove that for all p ≥ 0 and all
ω ∈ Ωp(M),

d(LX(ω)) = LX(dω).

(You may use the result of Problem 2 on Problem Set 6.)

2. Prove the following:
(a) (closed form)∧(closed form) = (closed form).
(b) (closed form)∧(exact form) = (exact form) =(exact form)∧(closed form).

Using parts (a) and (b),
(c) Show that wedge product of forms induces a well-defined product “∪” on

cohomology via the formula
[ω] ∪ [η] = [ω ∧ η].

(Here the brackets denote cohomology class of the differential form within.) Thus the
de Rham H∗(M) has both an additive and a multiplicative structure, satisfying the
usual distributive and associative laws, so we often refer to H∗(M) as the cohomology
ring.

3. Let M,N be manifolds, and let πM : M × N → M,πN : M × N → N be the
projections onto the first and second factors respectively. In class we saw that any
map of manifolds induces a map on cohomology via pullback of forms, so in this case
we have maps π∗M : Hp(M) → Hp(M × N) and π∗N : Hp(N) → Hp(M × N) for all
p ≥ 0. From Problem 2, we therefore have maps

Hp(M)×Hq(N) → Hp+q(M ×N)

[ω]× [η] 7→ π∗M [ω] ∪ π∗N [η] = [(π∗Mω) ∧ π∗Nη].

The maps above are linear (over R) in each factor and hence define maps Hp(M)⊗
Hq(N)→ Hp+q(M ×N) by the same formula with × replaced by ⊗ on the left-hand
side. We can collate these maps for a fixed value of p+ q and obtain maps

K :
⊕
p+q=r

Hp(M)⊗Hq(N)→ Hr(M ×N).

(Note that p or q can be zero in this sum.) The Künneth formula, which we will not
prove, asserts that the maps K are isomorphisms. This is sometimes written more
succinctly as

H∗(M ×N) ∼= H∗(M)⊗H∗(N),

an isomorphism of graded rings. (This actually says more than that the each map
K is an isomorphism, since a ring isomorphism implies an equivalence of product
structures, not just linear structures.)
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Use the Künneth formula to compute the cohomology ring of each of the following
spaces. In each case, give the generators of the ring in terms of the generators of the
cohomology of each factor. (For example, H∗(Sn) has a generator “1” in degree 0
[the constant function 1], a generator “a” in degree n [corresponding to an n-form
with total integral 1, or any other nonzero number]. When n = 1 one can take a to
be the cohomology class of the form we called “dθ” in class.)

(a) S1 × S1.
(b) Sm × Sn.
(c) S1 × S1 × . . .× S1 (n factors).

4. Compute the standard metric on the sphere Sn (the metric induced by the em-
bedding Sn ↪→ Rn+1) in coordinates given by stereographic projection. If you do this
correctly, you should find a metric conformally equivalent to the standard metric on
Rn (see Problem 6).

5. Let V be a finite-dimensional vector space with a nondegenerate quadratic form
h (i.e. an “inner product” that may or may not be positive-definite, such as a Rie-
mannian or Lorentzian metric). In class we saw that h determines an isomorphism
h : V → V ∗ and a nondegenerate quadratic form ĥ on V ∗. Let {ei} be an arbi-
trary basis of V and let {θi} be the dual basis of V ∗; define components hij, ĥ

ij by

h = hijθi ⊗ θj and ĥ = ĥijeii ⊗ ej. Let h··, ĥ
·· denote the matrices with components

hij, ĥ
ij respectively, and let h̃·· denote the inverse of the matrix h··.

(a) Show that h(ei) = hijθ
j and h−1(θi) = h̃ijej.

(b) For v ∈ V let {vi} denote the components of v in the basis {ei}. Show that if
we define vi = hijv

j, then h(viei) = vjθ
j.

(c) Show that if v, w ∈ V , then h(v, w) = viw
i.

(d) Show that ĥ·· = h̃··.

6. Two inner products g1, g2 on a vector space V are said to be conformally related
or conformally equivalent if one is a scalar multiple of the other: g2 = c2g1 for some
c > 0. (We use c2 rather than c so that the norms are related by a factor of c
rather than c1/2.) Analogously, two Riemannian metrics g1, g2 on a manifold M are
called conformally equivalent if at each point of M the inner products on TpM are
conformally equivalent, i.e. if there exists a positive function f : M → R such that
g2 = f 2g1.

Let g1, g2 be conformally related metrics on M with conformal factor f as above.
For purposes of this problem, let g

(p)
1 , g

(p)
2 be the induced metrics on p-forms.

(a) Let {ei} be a local g1-orthonormal basis of TM and let {θi} be the dual basis.
By what powers of f must one multiply {ei} and {θi} to get g2-orthonormal bases?

(b) Find the formula relating the induced metrics on 1-forms (i.e. find the exponent
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m for which g
(p)
2 = fmg

(p)
1 .

(c) More generally, find the exponent m for which g
(p)
2 = fmg

(p)
1 .

(d) Suppose that the manifold M above is oriented and let n = dim(M). Let ∗p,i :
Ωp(M)→ Ωn−p(M) be the Hodge star-operator on p-forms for the metric gi, i = 1, 2.
Find the relation between ∗p,2 and ∗p,1 (your answer should involve n, p, and f).
Using your answer, explain the following statement: “The star operator is conformally
invariant on forms of the middle degree.”

Remark. Clearly if two inner products on a vector space V are conformally equiv-
alent, then the angles they determine between vectors are the same. The converse is
also true. I suggest you prove this as an exercise, but you need not hand it in.

7. Let (M, g) be an oriented Riemannian manifold of dimension n.

(a) In terms of n and p, figure out the sign in ∗ ◦ ∗ = ±Id : Ωp(M)→ Ωp(M).

(b) In terms of n and p, figure out the sign in d∗ = ± ∗ ◦d ◦ ? : Ωp(M)→ Ωp−1(M).

8. Let V be an n-dimensional oriented vector space with an inner product. We can
define an operator ∗ :

∧p(V )→
∧n−p(V ) by repeating the construction for manifolds,

merely restricting to the fiber over a point (i.e. the analogy is V = T ∗qM for some
q ∈M).

(a) Show that the following map from the set of simple elements to the Grassmannian,

v1 ∧ . . . ∧ vp 7→ span{v1, . . . vp},

is well-defined. (I.e. if ω is expressible as a simple element in two different ways, then
the p-planes determined as above above are the same.)

(b) Show that if ω is simple, then so is ∗ω.

(c) What is the the geometric relation between the images of ω and ∗ω under the
map in part (a)?
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