
Differential Geometry—Fall 2014
Assignment 2’s non-book problems

1. Let x, y, z be the usual coordinate-functions on R3, let U = R3 \ {(0, 0, 0)}, define
r =
√
x2 + y2 + z2, and let ω be the 2-form on U given by

ω =
xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy

r3
.

Compute dω.

2. Differential forms and Electricity & Magnetism. [Note: you do not need to
know any physics to do this problem. It will just have additional meaning for you if
you do know the relevant physics.]

For this problem, index the standard coordinate functions on R4 from 0 to 3
rather than from 1 to 4, and define t = x0, x = x1, y = x2, z = x3 (so that the
coordinate-functions can be written either as t, x, y, z or as x0, x1, x2, x3, whichever is
more convenient for a given purpose). We will refer to the coordinate-function t as
time, and the other three coordinates as spatial coordinates.

Let U ⊂ R4 be open. The electric and magnetic fields on U are R3-valued func-
tions E,B. In Calculus 3 terminology, E and B are vector fields (E = E1i+E2j+E3k,
etc. for B), but are allowed to depend on time as well as on spatial coordinates.
Maxwell’s equations in vacuum, in units in which the speed of light is 1, are collec-
tively the following set of four equations:

∇ · E = 0 ∇ ·B = 0

∇× E = −∂B
∂t

∇×B = ∂E
∂t

Define a 2-form F on U by

F = dt ∧ (E1dx+ E2dy + E3dz)−B1dy ∧ dz −B2dz ∧ dx−B3dx ∧ dy.

At each point p ∈ U , define a linear operator ?M :
∧2T ∗

pR4 → ∧2T ∗
pR4 by defining

it as follows on elements of the standard basis:

?M(dt ∧ dx) = −dy ∧ dz, ?M(dt ∧ dy) = −dz ∧ dx, ?M(dt ∧ dz) = −dx ∧ dy,

?M(dx ∧ dy) = dt ∧ dz, ?M(dy ∧ dz) = dt ∧ dx, ?M(dz ∧ dx) = dt ∧ dy.

(There is a general definition of “star operators” such as the one above and the one
in your previous homework assignment. We are not far enough along in this class for
the general definition. I’ve inserted the subscript “M” above because this operator on
bi-covectors turns is the one appropriate to Minkowski space—for those students who
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know what Minkowski space is—rather than Euclidean space.) Extend the operator
?M pointwise to a linear map ?M : Ω2(U)→ Ω2(U).

(a) Show that Maxwell’s equations in vacuum are equivalent to the following pair
of equations:

dF = 0, d(?MF ) = 0. (0.1)

(b) The (electromagnetic) scalar potential and vector potential on U are, respec-
tively, a real-valued function Φ and an R3-valued function A = (A1, A2, A3) on U .
Define a 1-form A on U by

A = Φdt− A1dx− A2dy − A3dz.

Let F be as in part (a). Show that the equation F = dA is equivalent to the pair of
equations

E = −∇Φ− ∂A

∂t
, B = ∇×A.

(c) The charge density and current density on U are, respectively, a real-valued
function ρ and an R3-valued function J = (J1, J2, J3) on U . Define a 1-form J on U
by

J = ρdt− J1dx− J2dy − J3dz.
At each point p ∈ U , define a linear operator ?M : T ∗

pR4 → ∧3T ∗
pR4 by defining

it as follows on elements of the standard basis:

?M(dt) = dx ∧ dy ∧ dz,
?M(dx) = dt ∧ dy ∧ dz, ?M(dy) = dt ∧ dz ∧ dx, ?M(dz) = dt ∧ dx ∧ dy.

Extend this operator ?M pointwise to a linear map ?M : Ω1(U)→ Ω3(U).

Maxwell’s equations (at the microscopic level) in the presence of sources are the
following modified version of Maxwell’s equations in vacuum:

∇ · E = 4πρ ∇ ·B = 0

∇× E = −∂B
∂t

∇×B = 4πJ + ∂E
∂t
.

Show that this set of four equations is equivalent to the pair of equations

dF = 0, d(?MF ) = ?M(4πJ ). (0.2)

(d) Note that the second equation in (0.2) implies d(?MJ ) = 1
4π
dd(?MF ) = 0. Show

that the equation d(?MJ ) = 0 is equivalent to the equation

∂ρ

∂t
+∇ · J = 0. (0.3)

Equation (0.3), known in physics as the continuity equation, expresses conservation
of charge.
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