
Differential Geometry—MTG 6256—Fall 2014
Assignment 4’s non-book problems

Note: Problems 1 and 4 could have been asked on Assignment 3, but your professor
did not want to make that assignment any lengthier than it already was.

1. Let Symn(R) ⊂ Mn(R) ∼= Rn2
be the subspace consisting of n × n symmetric

matrices (those A for which At = A). Define F : Mn(R)→ Symn(R) by F (A) = AtA.
(In Problem Set 1 we computed DF , but we did not observe at the time that the image
of F , and hence of DAF for all A, lies in the subspace Symn(R).) Let I ∈Mn(R) be
the identity; note that F−1(I) = {A ∈ Mn(R) | AtA = I}, which is also known as
the orthogonal group O(n). Show that I is a regular value of F , and hence that O(n)
is a submanifold of Mn(R). What is the dimension of O(n)?

Note: O(n) is not connected; it has two connected components, the set SO(n) of
orthogonal matrices of determinant 1, and the set of orthogonal matrices of deter-
minant −1. This example shows that non-connected manifolds can arise naturally in
important examples.

2. Let ω be a non-vanishing n-form on a connected, oriented n-dimensional manifold
M . Prove that ω is either positive at all points of M or negative at all points of M .

3. Let M and N be manifolds of dimension m and n respectively. Recall that
M ×N naturally inherits the structure of an (m+n)-dimensional manifold: if AM =
{(Uα, φα)}α∈A,AN = {(Vβ, φβ)}β∈B, are atlases for M,N respectively, then AM ×
AN =

def
{(Uα × Vβ, φα × ψβ)}(α,β) is an atlas for M × N . If M and N are oriented,

then M ×N inherits an orientation (the product orientation): the orientation class of
AM ×AN , where AM ,AN are arbitrary atlases of M,N within the given orientation
classes.1

Let πM : M × N → M and πN : M × N → N be the projections onto the
first and second factors, respectively. Let ω ∈ Ωm

c (M), η ∈ Ωn
c (N). Prove that

π∗Mω ∧ π∗Nη ∈ Ωm+n
c (M ×N) and that∫

M×N
π∗Mω ∧ π∗Nη =

(∫
M

ω

)
×
(∫

N

η

)
,

where M × N is given the product orientation. (This is a generalization of the
following Calculus 3 fact: If f, g : R → R are supported in the intervals [a, b], [c, d]

respectively, then
∫ ∫

[a,b]×[c,d]
f(x)g(y)dxdy =

(∫ b
a
f(x)dx

)
×
(∫ d

c
g(y)dy

)
.)

1Alternatively: if V and W are oriented vector spaces of dimension m and n respectively, the
product orientation on V ⊕W is the one for which {(e1, 0), . . . (em, 0), (0, e′1), . . . , (0, e

′
n)} is positively

oriented, where {e1, . . . em}, {e′1, . . . e′n} are positively oriented bases of V,W respectively. Recalling
that T(p,q)M × N is canonically isomorphic to TpM ⊕ TqN , the product orientation on M × N is
the one for which (for all (p, q) ∈M ×N), the orientation of T(p,q)M ×N is the product orientation
determined by the orientations of the oriented vector spaces TpM,TqN .
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The multi-part problem below is optional. If it doesn’t interest you,
or you don’t have time, don’t worry about doing it. It deals with a very
important concept and tool in differential topology, and the last part of it
is essential to the differential-topological definition and interpretation of
the degree of a smooth map from one compact n-dimensional manifold to
another.

4. Transversality. Notation: Given two vector subspaces U, V of a vector space W ,
we define their sum U + V to be the subspace {u + v | u ∈ U, v ∈ V } (also called
span{U, V }).2

Two submanifolds M and Z of a manifold N are said to intersect transversely at
a point z ∈ N if TzM + TzZ = TzN (more precisely, if ι∗z(TzM) + j∗z(TzZ) = TzN,
where ι, j are the inclusion maps of M,Z, respectively, into N). If this condition is
met at all points of M

⋂
Z we say simply that M and Z intersect transversely, or

have transverse intersection, or that the intersection is transverse, and write M t Z.
More generally, given manifolds M,N and a submanifold Z ⊂ N , a map F :

M → N is said to be transverse to Z if for all (p, z) ∈M ×Z with F (p) = z, we have
F∗p(TpM) + TzZ = TzN . Short-hand notation for “F is transverse to Z” is “F t Z”.
We may view this as a generalization of the definition in the previous paragraph, since
in the case of two submanifolds M,Z of N , the submanifolds intersect transversely
if and only if the inclusion map ι : M → N is transverse to Z. (It’s clear that this
relation is symmetric in M,Z.) Note that in this case, ι−1(Z) = M

⋂
Z.

Transversality comes into play when we ask the question “Is the intersection of
two submanifolds a submanifold?” The answer is no in general, but yes if the inter-
section is transverse. Transversality is a sufficient, but not necessary, condition for
the intersection to be a submanifold. Some examples with N = R3, with coordinates
x, y, z: (i) the submanifolds Z = xy-plane, M = yz-plane, intersect transversely; (ii)
Z = xy-plane, M = z-axis, intersect transversely; (iii) Z = x-axis, M = y-axis, do
not intersect transversely ; (iv) Z = xy-plane, M = {graph of z = x2 − y2}, do not
intersect transversely (because of what happens at the origin).

(a) Let N = Rn, 0 ≤ k ≤ n, and view N as Rk ×Rn−k. (For the cases k = 0 and
k = n, the convention is R0 = {0} and we make the obvious identifications of {0}×Rn

and Rn × {0} with Rn.) Let Z be the k-dimensional submanifold Rk × {0 ∈ Rn−k}.
Prove that if M is a manifold and F : M → N is transverse to Z, then F−1(Z)
is a submanifold of M . (Hint: Consider the map G = π ◦ F : M → Rn−k, where
π : Rk ×Rn−k → Rn−k is projection onto the second factor.)

(b) Use the result of part (a) to prove that if M,N are arbitrary manifolds and

2Note that U and V are allowed to have nontrivial intersection. When the intersection is trivial,
i.e. U

⋂
V = {0}, we say that W is the direct sum of U and V , and (sometimes) write W = U ⊕V .

However, we also use the symbol “⊕” for the direct sum of two arbitrary vector spaces that aren’t
given to us as subspaces of a third.
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F : M → N is transverse to a submanifold Z ⊂ N , then F−1(Z) is a submanifold
of M . (Note that the case Z = {point} is the Regular Value Theorem, so the
theorem you’re asked to prove here may be considered a generalization.) What are
the dimension and codimension of F−1(Z)?

(c) Part (b), applied to the case in which F is the inclusion map of a submanifold
M ⊂ N , shows that if M t Z and M

⋂
Z 6= ∅, then M

⋂
Z is a submanifold of M .

For p ∈M
⋂
Z, express Tp(M

⋂
Z) in terms of TpM and TpZ.

(d) In the setting of part (c), M
⋂
Z is also a submanifold of Z, by symmetry. It

is easy to show that a submanifold of a submanifold of N is a submanifold of N , so:

• M is a submanifold of N , of a certain codimension;

• Z is a submanifold of N , of a certain codimension;

• M
⋂
Z is a submanifold of M , of a certain codimension;

• M
⋂
Z is a submanifold of Z, of a certain codimension; and

• M
⋂
Z is a submanifold of N , of a certain codimension.

Express the last three codimensions on this list in terms of the first two. To
understand what these relations are saying, after you figure out the formulas, write
them out without choosing letters to represent dimensions or codimensions; i.e. using
the terms “codimension of M in N”, “codimension of M

⋂
Z in M”, etc. Try to

formulate a general principle that explains (not necessarily rigorously) your findings.

(e) Independent of the earlier parts of this problem, what is a necessary and suffi-
cient condition that a subset S of a given manifold be a zero-dimensional submanifold?
(The condition should involve nothing more than point-set topology.) Apply this con-
dition when M,Z are transversely-intersecting submanifolds of N of complementary
dimensions (dim(M) + dim(Z) = dim(N)). What do you conclude about M

⋂
Z in

this case? If both M and Z are compact, what stronger conclusion can you reach?
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