
Differential Geometry 2—MAT 4930 —Spring 2015
Assignment 1

Note: Some of the problems on this assignment are simple applications of Stokes’s
Theorem, and could have been assigned last semester had there been time.

1. Let D be a domain with regular boundary in an oriented n-dimensional manifold
M , where n ≥ 1 and let ∂D have the induced orientation. Let ω ∈ Ωj(N), η ∈
Ωk(N), where j + k = n− 1, and assume that at least one of the sets supp(ω)

⋂
D,

supp(η)
⋂
D, is compact. (Note that the compact-support assumption is superfluous

if we assume that M is compact or that D is compact.) Prove the “integration-by-
parts” formula ∫

D

dω ∧ η =

∫
∂D

ω ∧ η − (−1)j
∫
D

ω ∧ dη.

Remark. The case D = M (hence ∂D = ∅) is important all by itself.

2. Let M be an n-dimensional manifold. Recall that ω ∈ Ωk(M) is called closed if
dω = 0, and exact if ω = dη for some η ∈ Ωk−1(M).

(a) Assume that M is compact, connected, and oriented, and let ω be a nonva-
nishing (i.e. nowhere-zero) n-form on M . Show that

∫
M
ω 6= 0. Show also that the

same conclusion can be reached if we drop the connectedness assumption, but assume
that ω is positive or negative (i.e. that ω has the same sign, relative to the given
orientation, at each point of M).

(b) Let ω ∈ Ωk(M). Show that if ω is exact, then for every compact oriented
k-dimensional submanifold Z ⊂M ,

∫
Z
ω = 0.

(c) Let g be a Riemannian metric on M and assume that M is compact and
oriented. Let ω be the corresponding volume form. Since every n-form on M is
closed (for trivial reasons), ω is closed. Show that ω is not exact.

Remark. Recall that every exact form is closed (since d2 = 0). Thus, one
necessary condition for a differential form to be exact is that it be closed. (This is a
generalization of the MAP 2302 exactness test for a differential M(x, y)dx+N(x, y)dy,
and of the Calculus 3 “curl test” for whether a vector field on an open set in R3 could
be the gradient of some function.) Recall also that every n-form on M is closed, for
trivial reasons. Thus, part (c) shows that a closed k-form need not be exact. (Part (c)
illustrates this only for k = n, but the fact is true more generally.) Part (b) gives an
exactness test for forms ω that pass the “Is dω = 0?” test: if we can find a compact,
oriented k-dimensional submanifold Z for which

∫
Z
ω 6= 0, then ω is not exact. In

practice, this is the only practical tool for showing that a given closed differential
form is not exact.
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3. Gradient of a function on a Riemannian manifold. Let (M, g) be a
Riemannian manifold. Recall that at each point p ∈ M , the inner product gp in-
duces an isomorphism gp : TpM → T ∗pM .1 Letting the point p vary, we obtain
an isomorphism g : {vector fields on M} → Ω1(M), and hence an isomorphism
g−1 : Ω1(M) → {vector fields on M}. The gradient (with respect to the metric
g) of a smooth function f : M → R is the vector field grad f on M defined by

grad f = g−1(df). (1)

(At each p ∈ M , the definition (1) is equivalent to defining (grad f)|p to be the
unique vector in TpM such that gp((grad f)|p , u) = 〈dfp , u〉 for all u ∈ TpM .) The
same definition applies if f is defined only on some open set U in M ; grad f is then
a vector field on U .

(a) Suppose that f : M → R is smooth and that Z is a “regular level set” of f ,
i.e. Z = f−1(c) for some regular value c of f . By the Regular Value Theorem, Z is a
codimension-1 submanifold of M . Show that grad f is a nonvanishing normal vector
field along Z.

(b) Let (M, g) be Rn with the standard metric (g = gEuc :=
∑n

i=1 dx
i ⊗ dxi), let

U ⊂ Rn be open, and let f : U → R be smooth. Show that grad f =
∑n

i=1
∂f
∂xi

∂
∂xi

.

(c) Let r : Rn → R denote Euclidean distance to the origin (i.e. r(x) =

(
∑

i(x
i)2)

1/2
). Compute grad (1

2
r2) on Rn, and grad r on Rn \ {0}.

4. Let j : Sn → Rn+1 be the inclusion map of the unit n-sphere into Rn+1. The
standard metric on Sn is gstd := j∗gEuc, where gEuc is the standard metric on Rn+1.
The standard orientation of Sn is the induced orientation on Sn as the boundary of
the unit ball Dn+1 := {x ∈ Rn+1 |

∑
i(x

i)2 ≤ 1}.
Below, (Sn, gstd) is given its standard orientation.

(a) Let x ∈ Sn. Under the canonical identification of TxR
n+1 with Rn+1, with

what subspace of Rn+1 is TxS
n identified (in terms of x)?

(b) Define the function r : Rn+1 → R as in Problem 3. Let ω denote the Rieman-
nian volume form of (Sn, gstd). Show that

ω = j∗(ιgrad r dx
1 ∧ dx2 ∧ · · · ∧ dxn+1). (2)

(c) For 1 ≤ i ≤ n + 1 define x̄i = j∗xi : Sn → R. Show that ω can also be
expressed as follows:

1I have never found a font in LaTeX that gives me the script lower-case “g” I’ve used class for
this map. The character I am using in this assignment is {\sf g}, the letter “g” in the sans-serif
font.
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ω =
n+1∑
i=1

(−1)i−1 x̄i dx̄1 ∧ · · · ∧ d̂x̄i ∧ · · · ∧ dx̄n+1 . (3)

Recall that in such expressions, the “hat”2 denotes omission:

dx̄1 ∧ · · · ∧ d̂x̄i ∧ · · · ∧ dx̄n+1 := dx̄1 ∧ · · · ∧ dx̄i−1 ∧ dx̄i+1 ∧ · · · ∧ dx̄n+1.

(d) Show that on the “upper hemisphere” {p ∈ Sn | xn+1(p) > 0}, we can further
rewrite (3) as

ω = (−1)n
dx̄1 ∧ dx̄2 · · · ∧ dx̄n

x̄n+1
. (4)

(e) Recall that the canonical identification of each tangent space of Rn+1 with
Rn+1 gives us an identification of {vector fields on Rn+1} with {Rn+1-valued functions
on Rn+1}. This identification gives meaning to the notion of “constant vector field”
on Rn+1, namely a vector field that corresponds to a constant Rn+1-valued function.
For each v ∈ Rn+1, let Ỹ (v) be the corresponding “constant” vector field on Rn+1, and
let Y (v) be the (tangent) vector field on Sn defined by Y (v)(x) := Y (v)|x := πx(Ỹ

(v)
x ),

where πx : TxR
n+1 → TxS

n is orthogonal projection.
For each v ∈ Rn+1, also define a function fv : Sn → R by fv(x) = v · x (ordinary

dot-product).
Show that, for each v ∈ Rn+1,

grad fv = Y (v)

5. Let M be a manifold, let ω, η be differential forms on M , and let X, Y be vector
fields on M .

(a) Discover a simple relation between ιX(ιY ω) and ιY (ιXω).

(b) Let k = deg(ω). Show that

ιX(ω ∧ η) = (ιXω) ∧ η + (−1)kω ∧ ιXη. (5)

Remark. A Z2-graded algebra is an algebra of the form A0 ⊕ A1 and where, if • is
the product on the algebra, Aj • Ak ⊂ Aj+k (and where “j + k” is interpreted mod
2). A Z-graded algebra is an algebra of the form ⊕k∈ZAk, where each Ak is a vector
space and where, if • is the product on the algebra, Aj •Ak ⊂ Aj+k. (If we are given
an algebra of the form ⊕k∈NAk or ⊕k∈N∪{0}Ak, obeying the product relation above,
we regard it as a Z-graded algebra in which Ai = {0} for i ≤ 0 or i < 0, respectively.)
Given a Z-graded algebra ⊕iAi, we can construct an associated Z2-graded algebra

2LaTeX command \widehat{}

3



B0 ⊕B1 by setting B0 = ⊕i evenAi, B1 = ⊕i oddAi. A linear operator on a Z2-graded
algebra or Z-graded algebra obeying the relation (5), with wedge-product replaced
by •, is called a graded derivation, an antiderivation, or a signed derivation.

6. Let g, h be (Riemannian metrics) on a manifold M . We say that h is conformally
equivalent or conformal to g if h is a real-valued function times g. This function
is called a conformal factor. Automatically from this definition, a conformal factor
must be smooth and strictly positive, so it is the square of another smooth, strictly
positive function. Thus the definition above can be rewritten as: h is conformal to g
if

h = f 2g (6)

for some smooth, positive function f : M → R. It is easy to see that “conformal to”
is an equivalence relation on the set of metrics on M , so we also say that the metrics
g, h are conformally equivalent (to each other), and that the Riemannian manifolds
(M, g) are conformally equivalent, when one metric is conformal to the other.

(a) Suppose g, h are conformally equivalent metrics on an oriented n-dimensional
Riemannian manifold M , and let f : M → R be as in (6). Let ωg, ωh be the
corresponding Riemannian volume forms. Express ωh in terms of f and ωg. (If you
do this correctly, you will see one of the reasons we choose to write the conformal
factor in the form f 2 rather than just f .)

(b) Suppose h = c2g for some constant c > 0, a very special case of conformal
equivalence, and that M is oriented. Let Vol(M, g) and Vol(M,h) denote the volume
of the manifold M with respect to the metrics g, h respectively. Express Vol(M,h) in
terms of Vol(M, g) and c.

Observe (for use in later problems) that the same relationship holds for volumes
of a domain D ⊂ M with regular (=smooth) boundary. (Smoothness of ∂D is not
essential here. The theorems we proved for integration of differential forms can be
extended to manifolds with corners, in which the images of chart-maps are allowed
to be open sets in (R+)n = [0,∞)× [0,∞)× · · · × [0,∞).)

(c) Let n ≥ 1 and let gstd denote the standard metric on the n-sphere Sn (the
same metric as in problem 4 above). Let pN = (0, 0, . . . , 0, 1), the “north pole” of
Sn, and let ster : Sn \ {pN} → Rn denote the corresponding stereographic-projection
map. We can pull the metric gstd back to Rn by the map ster−1. Explicitly compute
(ster−1)∗gstd in terms of gEuc and r, where gEuc is the Euclidean metric on Rn (not to
be confused with the “gEuc” in problem 4, which was the Euclidean metric on Rn+1),
and the function r : Rn → R is the Euclidean distance to the origin.

If you do this correctly, you will find that (ster−1)∗gstd is conformal to gEuc, that
the conformal factor is a function of r, and that this function of r is the same for all
n.
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7. Balls and spheres in Euclidean space. In this problem, Rn is given its
standard Riemannian metric gEuc and orientation. We assume n ≥ 1.

In this problem, don’t forget that volume of a subset of an n-dimensional manifold
means “n-dimensional volume” (what you’re used to calling length if n = 1, area if
n = 2, and volume if n = 3). For example, “Vol(S2)” is what you would have called
the surface area of the sphere S2 in Calculus 2 or 3.

Notation for this problem: (i) “c” always denotes a positive real number. (ii)
Let Dn

c and Sn−1c denote, respectively, the closed disk (:= closed ball) and sphere of
radius c centered at the origin in Rn. (For c = 1, we allow ourselves to omit the
subscript, as in problem 4: Dn = Dn

1 , S
n−1 = Sn−11 .) Observing that Sn−1c is the

boundary of Dn
c in Rn, we give Sn−1c the induced orientation. (iii) Let jc : Sn−1c →

Rn denote the inclusion map. (iv) Let λc : Rn → Rn be the map x 7→ cx. (v)
Let gc = j∗c gEuc, the induced Riemannian metric on Sn−1c . (When c = 1, we also
write gstd for g1.) (vi) Let ωSn−1

c
∈ Ωn−1(Sn−1c ) be the Riemannian volume form

of (Sn−1c , gc) with the given orientation. (vii) Let Vol(Dn
c ), Vol(Sn−1c ) denote the

volumes of Dn
c and Sn−1c with respect to the metrics gEuc and gc respectively. (viii)

Let πrad : Rn \ {0} → Sn−1 denote the radial projection map, x 7→ x/‖x‖, where
‖ · ‖ is the Euclidean norm. (The real number π will come up in this problem, so
we are not simply writing “π” for πrad.) (ix) In equation (7) below, r is the function
“distance to the origin” on the domain Rn \ {0} (on which r is smooth). Elsewhere
in this problem, interpret “r” just as an arbitrary positive number (like c, but more
suggestive of “radius”) or as a real variable in (0,∞).

(a) Show that gc = c2(λ1/c)
∗gstd.

(b) Show that Vol(Dn
r ) = rnVol(Dn) and that Vol(Sn−1r ) = rn−1Vol(Sn−1).

(c) Let ωRn denote the standard volume form on Rn. Show that, on the open
subset Rn \ {0},

ωRn = rn−1dr ∧ π∗radωSn−1 . (7)

(d) We define Vol(D0) = 1. (The disk D0 is a point; we are defining the 0-
dimensional volume of this point to be 1.)

In this part you will compute Vol(Dn) for all n ≥ 0 explicitly by an “obvious”
approach, induction on dimension. There are faster, slicker ways than this method.

(i) Using part (b), show that for n > 1,

Vol(Dn) =

∫ 1

−1
Vol(Dn−1√

1−(xn)2
)dxn (8)

= Vol(Dn−1)

∫ π

0

sinn θ dθ.
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(In case it’s hard to read: the object in parentheses on the right-hand side of (8) is
the disk of radius

√
1− (xn)2 in Rn−1.)3

(ii) For n ≥ 0, define

In =

∫ π

0

sinn θ dθ.

(For the case n = 0, interpret sinn θ as 1 even when θ = 0 or θ = π.) Show that for
n ≥ 2,

In =
n− 1

n
In−2 . (9)

(This is a Calculus 2 exercise in integration-by-parts.)

(iii) For positive integers n, we define

n!! = n(n− 2)(n− 4) . . .

{
2, n even,
1, n odd.

(So “!!” is like factorial, except that we step down by 2 for the next factor in the
product instead of by 1; “n!!” does not mean the huge number (n!)!. Your professor did
not invent this notation of questionable wisdom, but admits to finding it convenient.)
We define 0!! = 1.

Use equation (9) to deduce that for n ≥ 1,

In =
(n− 1)!!

n!!
×
{
π, n even,
2, n odd,

(10)

and using (10) deduce that

In In−1 =
2π

n
. (11)

(iv) Using step (i), for n ≥ 2 we have

Vol(Dn) = InVol(Dn−1) = In In−1Vol(Dn−2).

Now use equation (11) to derive an explicit formula for Vol(Dn) and (using part
(b)) for Vol(Dn

r ). Your formula should agree with familiar formulas for the cases
n = 1, 2, 3. It should also yield the amusing formula

3 For the case n = 3, the angle θ in the second integral above is the angle between the positive
z-axis and the line-segment from the origin to a point on the sphere. Physicists usually call this
angle θ (or at least they used to, when your professor was a student), but your Calculus 3 textbook
probably called it φ. Outside of calculus classes, it’s more common to use the physics convention for
which spherical coordinate is called θ and which is called φ (the opposite of the calculus-textbook
convention). One case in which the physics convention is completely standard is the notation for
spherical harmonics (see Wikipedia’s article on this topic, for example).
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∞∑
m=0

Vol(D2m) = eπ. (12)

(As far as your professor knows, equation (12) is devoid of any deep meaning and is
entirely useless.)

(e) Using part (c) and a homework problem from last semester, show that

Vol(Dn
r ) =

∫ r

0

Vol(Sn−1t ) dt (13)

=
rn

n
Vol(Sn−1). (14)

Observe that (13) implies an equality you might have guessed,

d

dr
Vol(Dn

r ) = Vol(Sn−1r ), (15)

and thereby get a formula for Vol(Sn) for all n ≥ 1.

(f) Using (14) and part (d)(iv), obtain an explicit formula for Vol(Sn). (This
should agree with familiar formulas for n = 1, 2.)

Remark. An alternative inductive approach to finding the volumes of Euclidean
spheres, without first finding the volumes of Euclidean balls, is to use problem
4(d) and equations (7) and (14) to get a recurrence relation between Vol(Sn) and
Vol(Sn−1). Similar trigonometric integrals are involved.

8. Measure-zero sets in manifolds. Doing this long problem is optional, but you
should read it whether or not you do any work on the problem. The concepts and
results are worth knowing. You’ll be allowed to apply them (in this course) without
doing this problem.

“Set of measure zero” in Rn, or in any n-dimensional manifold, is a concept that
does not require any knowledge of measure theory or any graduate-level real analysis.
It’s definable without having to define what “measure” means for any set that’s not
of measure zero.

Definition 1: A cube of side λ in Rn is the Cartesian product of n closed intervals
of length λ. Equivalently, a cube of side λ in Rn is a closed ball of radius λ/2 with
respect to the norm ‖ · ‖∞ on Rn (‖(x1, . . . , xn)‖∞ = maxi |xi|).

Definition 2: A set Z ⊂ Rn has measure zero (as a subset of Rn) if, for all ε > 0,
Z can be covered by a countable collection of cubes the sum of whose volumes is less
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than ε.4

Observe that, trivially, every subset of a measure-zero set in Rn has measure zero
(as a subset of Rn).

(a) Show that, as a subset of R2, the set [0, 1]× {0} has measure zero.

(b) Show that the countable union of measure-zero subsets of Rn has measure zero.
Using this and part (a) (suitably generalized), show that the x-axis {(x, 0) | x ∈ R}
has measure zero in R2.

(c) Generalize part (b): show that if 1 ≤ k < n, then Rk × {0 ∈ Rn−k} has
measure zero in Rn.

(d) Let U ⊂ Rn be open, f : U → Rn a C1 map, K ⊂ U compact. Show that
there exists c > 0 if C ⊂ K is a cube of side λ, then f(C) is contained in a cube of
side cλ. (The constant c may depend on n, f, and K.)

(e) Let U ⊂ Rn be open, f : U → Rn a continuously differentiable map. Use parts
(c) and (b) to show that if Z ⊂ Rn has measure zero, then f(Z) has measure zero.
(You will also need the fact that every open subset of Rn is σ-compact. This follows
trivially from Theorem 0.11 in the “Sufficient conditions for paracompactness” notes,
but can be proven more directly.)

(f) Let (U, φ), (V, ψ) be charts of an n-dimensional manifold M , and let Z ⊂
U
⋂
V . Show that if φ(Z) has measure zero in Rn, then so does ψ(Z).

Definition 3. Let M be an n-dimensional manifold. We say that a subset Z ⊂ M
has measure zero if for all charts (U, φ) of M , the set φ(Z

⋂
U) has measure zero in

Rn. (Note that “all charts” means “all charts in the maximal atlas of M”.)

(g) Let M be an n-dimensional manifold, Z ⊂ M . Using part (f), show that a
sufficient condition for Z to have measure zero is that for some atlas {(Uα, φα)}α∈A,
not necessarily maximal, φα(Z

⋂
Uα) has measure zero in Rn for all α ∈ A.

(h) Let M be an n-dimensional manifold, Z ⊂M a manifold of positive codimen-
sion. Show that Z has measure zero in M .

(i) Let M be an n-dimensional oriented manifold, Z ⊂ M a closed submanifold
of positive codimension. For simplicity, assume that M is compact (this assumption
is not necessary). Since Z is closed, M \ Z is an open set in M , hence an oriented
manifold. Let ω be a compactly supported n-form on M . Show that∫

M

ω =

∫
M\Z

ω. (16)

4There are two conventions for what “countable” means. The one your professor uses is that a
set is countable if it can be put into one-to-one correspondence with a subset of the natural numbers.
Thus a countable set is either finite or countably infinite.

8



(To do this problem, part of what you will need to do is to figure out how to define
the right-hand side of (16), since ω|M\Z need not have compact support.)

(j) Hypotheses as in part (i), but now take the closed set Z to be a finite union
of positive-codimension submanifolds of M . Show that (16) still holds.

Remark. What you are showing in the last two parts of this problem are special cases
of the principle, “For purposes of integration, sets of measure zero do not matter.”
This is true with far fewer hypotheses than were given above, but more work and
more definitions are needed to show this.

9. Application of Problem 8: computing integrals in practice. Partitions
of unity are an indispensable tool in defining, and proving theorems about, integrals
of differential forms. However, for purposes of computing most integrals, partitions
of unity are impractical; their formulas are too complicated for the relevant iterated
integrals to be calculated explicitly. Instead, to integrate an n-form ω over an oriented
manifold M , what we usually do is to cover most of M—everything but a closed set
of measure zero, usually a finite union of submanifolds of positive codimension—with
a finite number of disjoint charts whose closures cover all of M . Often all we need is
one chart.

Read the examples below; the problem-parts are after the examples.

Example 1: M = Sn ⊂ Rn+1, with the standard orientation. We can write
M as the union of the open upper hemisphere H+, the open lower hemisphere H−,
and the equator. The equator is a codimension-one submanifold, hence has mea-
sure zero. On each hemisphere we can use the chart-map given by the projection
(x1, . . . , xn, xn+1) 7→ (x1, . . . , xn). For any ω ∈ Ωn(Sn), we have

∫
M
ω =

∫
H+

ω+
∫
H−

ω.
We can compute the integrals on the right-hand side by pulling them back to the open
unit disk (Dn)◦ ⊂ Rn using the inverses of the chart-maps, being careful with ori-
entations. (The given chart on H− is positively oriented, but the given chart on
H− is negatively oriented. If f is the inverse of the chart-map on H−, we have∫
H−

ω = −
∫
(Dn)◦

f ∗ω.)

Example 2: Again M = Sn ⊂ Rn+1, with the standard orientation. As in
problem 6c, let pN ∈ M be the “north pole” as in problem 6c and let ster : U :=
M \ {p0} → Rn be the corresponding stereographic projection map. Then for any
ω ∈ Ωn(Sn), we have

∫
M
ω =

∫
U
ω, which we can evaluate by pulling back to Rn by

ster−1. Unless ω vanishes on a neighborhood of the north pole, (ster−1)∗ω will not
have compact support, so the integral over Rn will be an improper integral in the
sense of Calculus 2, but it is guaranteed to converge because

∫
M
ω exists.

Example 3: M = S2 ⊂ R3, with the standard orientation. We can use spherical
coordinates (see footnote 3) to parametrize the sphere: define f : (0, π)×(0, 2π)→ S2

by f(θ, ϕ) = (sin θ cosϕ, sin θ sinϕ, cos θ). With this domain the map f is one-to-one,
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and its image is S2 \ Z, where Z is a closed semicircle connecting the north and
south poles, lying in the half-plane {(x, y, z) | y = 0, x ≥ 0}. The pair (S2 \ Z, f−1)
is a positively-oriented chart of S2. (Students: check that “positively oriented” is
correct here.) The set Z is the union of two zero-dimensional submanifolds and one
one-dimensional submanifold, hence has measure zero. Hence for any ω ∈ Ω2(S2),∫

S2

ω =

∫
(0,π)×(0,2π)

f ∗ω.

The open rectangle (0, π) × (0, 2π) is not compact, of course. But the map f can
be extended to a smooth map f̃ : R2 → S2 by removing the restrictions on θ and
ϕ. Then f̃ ∗ω can be integrated over the compact rectangle [0, π] × [0, 2π]. Since
the boundary of this rectangle has measure zero in R2 (it is a finite union of zero-
dimensional and one-dimensional submanifolds of R2), and the restriction of f̃ to the
open rectangle is f , we have

∫
(0,π)×(0,2π)

f ∗ω =

∫
[0,π]×[0,2π]

f̃ ∗ω

=

∫ π

0

[∫ 2π

0

{some smooth function of (θ, ϕ)}dϕ
]
dθ.

(The function of (θ, ϕ) in the integrand will depend on ω, of course; the purpose of
the second line above is just to remind you that the way we would usually compute
the double integral on the previous line is to turn it into an interated integral.)

Example 4. Recall from last semester’s homework that the (2n)-dimensional
manifold CP n, complex projective space, has a “standard atlas” with n + 1 charts
(Ui, φi), where Ui = {[z0, z1, . . . , zn] | zi 6= 0}. Fact: CP n is orientable. (You may
assume this, or try to show it if you wish.) The standard orientation is the one for
which φ0 (or any φi) is an orientation-preserving map from its domain to R2n. The
complement of any of the sets Ui is a submanifold of CP n diffeomorphic to CP n−1

(why?), hence has measure zero in CP n. Thus, for any ω ∈ Ω2n(CP n),∫
CPn

ω =

∫
U0

ω =

∫
R2n

(φ0
−1)∗ω.

(a) Compute Vol(S2) (with respect to the standard metric) using Example 1, 2,
or 3 (your choice) and the Riemannian volume form on S2 computed in problem 4.
Optional: Compute the volume using more than one of these examples and check
that you get the same answer.

(b) (This part is optional.) Fact you may assume: There is a differential
form ω ∈ Ω4(CP 2) for which
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(φ0
−1)∗ω =

dx1 ∧ dy1 ∧ dx2 ∧ dy2

(1 + |z1|2 + |z2|2)4
(17)

where zj = xj + iyj, j = 1, 2. (The statement above is true with the last exponent
in the denominator replaced by any m ≥ 4, but there is something special about the
exponent 4: the formulas for (φ1

−1)∗ω and (φ2
−1)∗ω are also (17), modulo the names

of the coordinates. There’s a good reason for this, but the explanation requires
a digression into complex-valued coordinates and differential forms. For CP n the
magic exponent is 2n.) Compute

∫
CP 2 ω. You will need Vol(S3) from problem 7f to

finish this computation.
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