
Differential Geometry 2—MAT 4930 —Spring 2015
Assignment 2

1. Let M,N be manifolds and F : M → N a smooth map. Vector fields X̃ on M , X
on N are said to be F -related if F∗pX̃p = XF (p) for all p ∈M . We also sometimes say

that X̃ projects to X if this relation holds, but that terminology can be misleading
if F is not surjective. (F could even be the inclusion map of a submanifold, and X̃
an extension of X to N .) Note that a necessary condition for a vector field X̃ to be
“projectable by F”—i.e. F -related to some vector field on N—is that for all q ∈ N
and all p1, p2 ∈ F−1({q}), we must have F∗p1X̃p1 = F∗p2X̃p2 . Most vector fields on M
will not meet this consistency condition if F is not injective.

Suppose that M,N,F, X̃, and X are as above, with X̃ F -related to X. Let Φ̃ and
Φ be the flows of X̃ and X respectively, defined on their maximal domains.

(a) Show that if (p, t) ∈ domain(Φ̃) then (F (p), t) ∈ domain(Φ) (so that if Φ̃t(p)
is defined, then so is Φt(F (p))), and that F ◦ Φ̃t = Φt ◦ F on domain(Φ̃).

(b) Show that if Ỹ is another vector field on M , and is F -related to a vector field
Y on N , then [X̃, Ỹ ] is F -related to [X, Y ]. (Use the fact that [X, Y ] = LXY .)

We often write the fact proven in (b) as “F∗[X̃, Ỹ ] = [F∗X̃, F∗Ỹ ]”, with the
understanding that this applies only if X̃, Ỹ are projectable by F .

2. Let X be a vector field on the manifold M , with flow Φ. Let µ be a tensor field
on M . Recall that the Lie derivative of µ by X at the point p is defined by

(LXµ)|p =
d

dt

(
(Φ∗

tµ)|p
)∣∣∣∣

t=0

.

It is natural to ask: what if we evaluate the t-derivative at general t?
Show that if (p, t0) is in the domain of the flow, then

d

dt

(
(Φ∗

tµ)|p
)∣∣∣

t=t0
=

(
Φ∗

t0
(LXµ)

)∣∣
p
. (1)

Remark. We allow ourselves to rewrite (1) more briefly as

d

dt
Φ∗

tµ = Φ∗
t (LXµ) (2)

with understanding that the equation is interpreted pointwise; for each p ∈M we are
differentiating the curve t 7→ (Φ∗

tµ)p in a fixed, finite-dimensional vector space, the
fiber at p of the appropriate tensor bundle. For each p, there is guaranteed to be an
open interval containing 0 on which this curve is defined. If we attempt, instead, to
interpret t 7→ Φ∗

tµ as a curve in the infinite-dimensional vector space Γ(E), the space
of sections of the tensor bundle in which µ takes its values, we run into two problems:
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(i) if the (maximal) domain of Φ is not all of M ×R, then there will be no ε > 0 for
which “Φ∗

tµ” is a section of E (a tensor field defined on all of M) for all t ∈ (−ε, ε);
and (ii) even if Φ is defined on M×R, we would have to choose a topology on Γ(E) in
order for the difference-quotient limit to be defined (and furthermore, the limit might
exist for some topologies and not for others, and for some µ but not for others).

(b) Show that for all (p, t) in the domain of the flow Φ of X, we have

(Φ∗
tX)p = Xp. (3)

(One way to get this is to use part (a). However, (3) is also equivalent to XΦt(p) =
Φt∗pXp, which can be shown directly, without using part (a).) We usually write (3)
more briefly as “Φ∗

tX = X” again with the understanding that this is to be interpreted
pointwise in M .

3. Let M be a manifold, X a vector field on M , Φ the flow of X. Prove that fixed-
points of the flow—i.e. those points p ∈M for which Φt(p) = p ∀t—are exactly those
p at which Xp = 0.

4. Notation as in problem 3. An integral curve of X is a “Φ-orbit”, i.e. a set of the
form {Φt(p)} with p fixed and t varying over an open interval containing 0. Prove
that multiplying X by a nonzero function only reparametrizes the integral curves;
it does not change the underlying point-sets. More precisely, if Y = fX for some
nonzero function f , prove that every integral curve of Y is an integral curve of X and
vice-versa.

5. Let M be a manifold, X a vector field on M , and suppose that Xp 6= 0 at some
p ∈ M . Prove that there are local coordinates {xi} on some open neighborhood U
of p such that X = ∂/∂x1 on U . (Hint: use the flow of X, and turn time into a
coordinate.)

Note: “there are local coordinates {xi} on some open neighborhood U of p” is
just another way of saying “there is a chart (U, φ) with p ∈ U”; it is understood that
the {xi} are the standard coordinate functions on φ(U) ⊂ Rn, (n = dim(M)) pulled
back to U .

6. This problem begins an important generalization of problem 5.
The integral curves of a nonzero vector field on a manifold M are one-dimensional

submanifolds of M . Given two vector fields X and Y , one can ask whether their
integral curves “hang together” to produce two-dimensional submanifolds (at least
locally), any two points of which can be connected to each other by moving along
a piecewise-smooth curve each of whose smooth segments is a portion of an integral
curve of X or Y . This problem gives a sufficient condition on X and Y for them
to generate a two-dimensional submanifold locally in this way. The condition is also
necessary in a certain sense (see part (c)). A more general sufficient condition is given
in part (d). (Note: Each part of this problem after (a) depends on part (a).)
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Let M be a manifold, X and Y vector fields on M . , with flows Φ and Ψ re-
spectively. We say the flows of X and Y commute if for any p ∈ M and any open
intervals I, J containing 0 such that if Φt ◦ Ψs(p) and Ψs ◦ Φt(p) are defined for all
(t, s) ∈ I × J , then Φt ◦Ψs(p) = Ψs ◦ Φt(p) for all (t, s) ∈ I × J .

(a) Prove that [X, Y ] ≡ 0 iff the flows of X and Y commute. (One direction of
the “iff” is much easier than the other. The hard direction is what’s needed below.)

(b) Suppose that X and Y are linearly independent at p, and that [X, Y ] ≡ 0.
Prove that there are local coordinates {xi} on some open neighborhood U of p such
that X = ∂/∂x1 and Y = ∂/∂x2 on U . (Hint: use the flows.)

(c) Hypotheses as in (b). Prove that there exists a two-dimensional submanifold
L of M , containing p, such that at each point q of L the tangent space TqL is spanned
by Xq and Yq. Conversely (more or less), show that given any two-dimensional sub-
manifold L of M , and any p ∈ L, there exist vector fields X, Y defined on an open
neighborhood U of p in M that are linearly independent at every point of U and
satisfy [X, Y ] ≡ 0 on U . (The reason for the “more or less” is that your X and Y are
required to be linearly independent not just at p, but throughout U . However, you
will probably find that the same proof you’d have used to show linear independence
at p works at every point of your U .)

(d) Suppose that on some open set V , the vectors Xq and Yq are linearly indepen-
dent at each q ∈ V and that [X, Y ]q lies in the span of Xq and Yq. Thus there are
unique functions f, g : V → R such that [X, Y ] = fX+gY for some unique functions
f and g.

(i) Show that f and g are smooth.
(ii) (You may assume part (i) to do this part.) Prove for each p ∈ V there

exist a neighborhood U of p and locally-defined vector fields X̃, Ỹ with the same span
as X and Y at each point of U , satisfying [X̃, Ỹ ] ≡ 0. (Hence, from part (c) these
conditions on X and Y can replace the less general conditions in part (b).)
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