
Differential Geometry 2—MAT 4930 —Spring 2015
Assignment 3

1. Recall (especially if you’ve never learned it) the polar decomposition of an invertible
matrix: any invertible matrix A can be written uniquely as a product RS, where R
is an orthogonal matrix and S is a symmetric positive-definite matrix. (“Recall”
also that a symmetric n × n real matrix S is called positive-definite if v·Sv > 0
for all nonzero v ∈ Rn, and that this condition is equivalent to positivity of all the
eigenvalues of S.) It can be shown that R and S depend smoothly on A. It can also

be shown that a 2 × 2 symmetric matrix

(
a b
b c

)
is positive-definite if and only if

a > 0 and det(A) > 0. Below, you may assume all of the facts just stated.

(a) Let S = {2 × 2 symmetric real matrices}, a 3-dimensional vector space. Let
S1 = {S ∈ S | det(S) = 1}. Show that S1 is a submanifold of S diffeomorphic to R2.

(b) Use the polar decomposition and part (a) to show that SL(2,R) is diffeomorphic
to SO(2) × R2, hence to S1 × R2.1 This shows, in particular, that SL(2,R) is
connected.

(c) Recall from class that the Lie algebra of SL(2,R) is sl(2,R) =

{(
a b
c −a

)
| a, b, c ∈ R

}
.

In class we saw that if X =

(
a b
c −a

)
, then X2 = ∆I, where ∆ = a2 + bc. Show

that

exp(X) =


(cosh

√
∆)I + sinh

√
∆√

∆
X if ∆ > 0,

I +X if ∆ = 0,

(cos
√
|∆|)I +

sin
√
|∆|√
|∆|

X if ∆ < 0.

(1)

(d) Deduce from part (c) that for all X ∈ sl(2,R), tr(exp(X)) ≥ −2.

(e) Find A ∈ SL(2,R) with tr(A) < −2, and hence show that SL(2,R) is a connected
Lie group for which the exponential map is not surjective.

2. Another Lie group for which it is easy to compute the exponential map explicitly
is SO(3).

(a) As with other matrix groups, we identify so(n), the Lie algebra of SO(n), with
TI(SO(n)) ⊂ TIMn(R) ∼=canon. Mn(R), and thereby identify so(n) with a subspace of

1Note: “Diffeomorphic” is all you’re asked to show, not “isomorphic as Lie groups”. The Lie
groups SL(2,R) and SO(2) × R2 are not isomorphic. If they were, they’d have isomorphic Lie
algebras. But the Lie algebra of SO(2)×R2 is abelian, while the Lie algebra of SL(2,R) is not.
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Mn(R). Show that TI(SO(n)) = ker(DF |I), where F : Mn(R) → {symmetric n× n
real matrices} is defined by F (A) = AtA (see last semester’s Assignment 4 non-book
problem 1). Then use this fact to show that so(n) is the space of n×n antisymmetric
matrices.

(b) Using the same general procedure as in problem 1(c), compute exp : so(3) →
SO(3). (Note: for X ∈ so(3) you won’t find a simple formula relating X2 to I, but
you’ll find one relating X3 to X.) From your explicit formula for this exponential
map2, deduce that all one-parameter subgroups γ : R→ SO(3) are periodic.

3. Let G be a Lie group. A (real-valued) differential form ω on a Lie group G is called
left-invariant if L∗gω = ω for all g ∈ G. Just as for a vector field, left-invariance of a
“set-theoretic” differential form on G automatically implies smoothness.

(a) Let k ≥ 0 and let ξ ∈
∧kT ∗eG. Show that there exists a unique k-form ω ∈ Ωk(G)

such that ωe = ξ.

(b) Characterize, in simpler terms, what a left-invariant 0-form on G is.

(c) Let k ≥ 1, let ω be a left-invariant k-form onG, and letX1, . . . , Xk be left-invariant
vector fields on G. Show that the function ω(X1, . . . , Xk) : G→ R is constant.

(d) Show that if a differential form ω on G is left-invariant, then so is dω.

(e) Let θ be a left-invariant 1-form on G and let X, Y be left-invariant vector fields.
Show that dθ(X, Y ) = −〈θ, [X, Y ]〉.

(f) Let V be a finite-dimensional vector space, and for k ≥ 0 let Ωk(G;V ) denote the
space of V -valued differential forms on G. (Brief review: we define Ω0(G;V ) to be
the space of smooth functions G→ V ; for k ≥ 1 an element of Ωk(G;V ) is a section
of the vector bundle whose fiber at g ∈ G is the space of k-linear antisymmetric maps
TgG×TgG×. . . TgG→ V , a space that we can canonically identify with (

∧kT ∗gG)⊗V .
For k ≥ 1, ω ∈ Ωk(G;V ), and vector fields X1, . . . , Xk on G, ω(X1, . . . , Xk) is a
smooth function G→ V .) The definition of “left-invariant” is the same for V -valued
differential forms ω as for real-valued differential forms: L∗gω = ω for all g ∈ G. Show
that parts (a)–(e) of this problem generalize to V -valued differential forms.

4. (Lie-algebra-valued differential forms.) (Note: Do problem 3(f) first.) Let G
be a Lie group and let g be its Lie algebra. For purposes of this problem, it is more
convenient to identify the set g with TeG than with the set of left-invariant vector

2This formula, which anyone who has ever bothered to compute the exponential map so(3) →
SO(3) has figured out for him/herself in a matter of minutes, is glorified in the applied-math liter-
ature with a name, “Rodrigues’ formula”. In fairness, though, whether or not Rodrigues, whoever
he or she was, deserves to have his or her name attached to this formula, there’s an advantage to
having the name: it’s quicker to say “By Rodrigues’ formula, . . . ” than to say “By the standard
formula for the exponential map from so(3)→ SO(3), . . . .”
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fields. Below, “g-valued differential form” means “TeG-valued differential form.”
There is a combination “wedge-bracket” operation Ωk(G; g)×Ωl(G; g)→ Ωk+l(G; g)

that can be defined as follows: for ω ∈ Ωk(G; g), η ∈ Ωl(G; g), and vector fields
X1, . . . , Xk+l on G

[ω, η](X1, . . . , Xk+l] =
1

k!l!

∑
π∈Sk+l

sgn(π)[ω(Xπ(1), . . . , Xπ(k)) , η(Xπ(k+1), . . . , Xπ(k+l))].

In particular, for ω, η ∈ Ω1(G; g), µ ∈ Ω2(G; g), and vector fields X, Y, Z on G,

[ω, η](X, Y ) = [ω(X), η(Y )]− [ω(Y ), η(X)]

and [ω, µ](X, Y, Z) = [ω(X), µ(Y, Z)] + [ω(Y ), µ(Z,X)] + [ω(Z), µ(X, Y )].

Note that for ω ∈ Ω1(G; g), the 2-form [ω, ω] is nonzero in general:

[ω, ω](X, Y ) = 2[ω(X), ω(Y )].

The group G has a canonical g-valued 1-form ω called the Maurer-Cartan form,
defined by

ωg = Lg−1∗g . (2)

Equation (2) may look initially as if somebody forgot to put something to the right
of Lg−1∗g, but there’s no typo here: Lg−1∗g is a linear map TgG → TeG = g. Such a
linear map is exactly what the value at g of a g-valued 1-form is supposed to be.

Below, ω denotes the Maurer-Cartan form on G.

(a) Show that ω is left-invariant, and can be characterized as the unique left-invariant
g-valued 1-form on G whose value at e is the identity map TeG→ TeG. (This is the
sense in which the Maurer-Cartan form is canonical.)

(b) Show that ω satisfies the structural equation

dω +
1

2
[ω, ω] = 0.

(c) Show that for any g-valued 1-form η, we have

[η, [η, η]] = 0, (3)

and that for η = ω, equation (3) is equivalent to the Jacobi identity for the Lie algebra
g.
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