
Differential Geometry—MTG 6257—Spring 2000
Problem Set 1

Notation for all the problems below. Unless otherwise specified, (M, g) is
a Riemannian manifold of dimension n. Summation notation for repeated indices is
used.

1. Let {θi}n1 be a locally-defined orthonormal basis of 1-forms. Prove that there is a
unique antisymmetric n×n matrix B of locally-defined 1-forms such that dθi +Bi

j ∧
θj = 0, i = 1, . . . , n.

2. Let g̃ be a metric on M conformally related to g; thus g̃ = e2fg for some function
f : M → R. Let ∇, ∇̃ be the Levi-Civita connections on TM induced by g, g̃
respectively. Prove that for all vector fields X,Y on M ,

∇̃XY = ∇XY +X(f)Y + Y (f)X − g(X, Y )gradg(f),

where gradg denotes gradient taken with respect to g.

3. (Notation as in problem 2.) Let {ei} be a local g-orthonormal basis of TM , and let

ẽi = e−fei. Let {θi}, {θ̃i} be the local bases of T ∗M dual to {ei}, {ẽi} respectively, and
let Θ, Θ̃ be the (matrix-valued) connection forms relative to {ei}, {ẽi} respectively.

(a) Show that {ẽi} is g̃-orthonormal.
(b) Show that θ̃i = efθi, i = 1, . . . , n.
(c) Show that Θ̃i

j = Θi
j − ιgradgf (θ

i ∧ θj).

4. (a) Let R2
+ = {(x, y) ∈ R2 | y > 0}, also called the upper half-plane. Let g1 be

the Riemannian metric (dx2 + dy2)/y2 (recall that dx2 means dx⊗ dx). Compute the
Gauss curvature K(x, y) for the Riemannian manifold (R2

+, g1).
(b) Let D2 be the open unit disk in R2, i.e. {(x, y) ∈ R2 | x2 + y2 < 1}. Let g2

be the Riemannian metric
4

(1− r2)2
(dx2 + dy2),

where r2 = x2 + y2. Compute the Gauss curvature K(x, y) for the Riemannian
manifold (D2, g2).

(c) Find an isometry F : (R2
+, g1) → (D2, g2) (i.e. a diffeomorphism for which

F ∗g2 = g1).
(d) Let c > 0. Find a metrics on (i) R2

+, and (ii) D2, each of which has constant
Gauss curvature −c2.

5. Let γ : [a, b]→M be a smoothly parametrized curve for which γ′ is nowhere zero.
(a) Prove that there exists a smooth reparametrization of γ, say γ̃, with the same
orientation as γ and for which ‖γ̃′‖ ≡ 1. (This is called a unit-speed parametrization or
an arclength parametrization.) (b) Prove that if g̃1 and g̃2 are two such reparametriza-
tions, then their parameters differ by a constant: γ̃2(t) = γ̃1(t+ c) for some constant
c.
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6. Let (Z, g̃) be a Riemannian manifold, M ⊂ Z a submanifold, ι : M → Z the
inclusion map, and g = ι∗g̃ (the Riemannian metric on M induced from (Z, g̃)—the
restriction of g̃ to vectors tangent to M). For p ∈ M , let π : Tι(p)Z → TpM be the
orthogonal projection defined by g̃. Consider the two connections ∇(1),∇(2) on (M, g)
defined below.

(i) ∇(1) = the Levi-Civita connection of (M, g).
(ii) ∇(2) = the operator defined as follows. Let p ∈ M and let X, Y be vector

fields defined on a neighborhood UM of p in M . Let X̃, Ỹ be extensions of ι∗X, ι∗Y
to a neighborhood UZ of ι(p) in Z. Define

(∇(2)
X Y )|p = π(∇Z

X̃
Ỹ |ι(p))

where ∇Z is the Levi-Civita connection of the metric g̃ on TZ. Show that ∇(2)
X Y is

well-defined (i.e. is independent of the choices of extensions) and that ∇(2) = ∇(1).

7. Let U be an open neighborhood of the origin in R2, f : U → R a smooth function,
and let M ⊂ R3 be the graph of f . Assume that f(0, 0) = 0 and that D(0,0)f = 0, so
that M passes through the origin and has horizontal tangent plane there. Give R3

the standard metric, let i, j,k be the usual unit vectors in R3, and let ĥ be the second
fundamental form of M with respect to the unit normal vector field whose value at
the origin is k. Let H be the Hessian of f at (0,0) (the matrix of second partials);
since f and its first partials vanish at (0,0), Taylor’s Theorem implies that near (0,0),

f(x, y) =
1

2
(x, y)H

(
x
y

)
+ higher order terms.

Show that at the origin, H is also the matrix of ĥ with respect to the basis
{e1 = i, e2 = j} of T(0,0,0)M . (I.e., show that ĥ(ei, ej) = (∂2f/∂xi∂xj)(0, 0).)

8. Let V be a finite-dimensional vector space, g an inner product on V , h an arbitrary
bilinear form on V . Let g,h be the linear maps V → V ∗ induced by g, h respectively;
g is an isomorphism but h need not be. Define S : V → V by S = g−1 ◦ h. Show
that S is the unique endomorphism of V for which

h(X, Y ) = g(X,S(Y ))

for all X, Y ∈ V .

9. Let E be a vector bundle over M with connection ∇ and curvature F . Let ∇ also
denote the induced connection on the endomorphism bundle End(E). Recall that
the Bianchi identity asserts that d∇F = 0, where F is viewed as an End(E)-valued
2-form and where d∇ : Ω2(End(E)) → Ω3(End(E)) is covariant exterior derivative.
Show that the Bianchi identity is equivalent to the assertion that for all vector fields
X, Y, Z on M , we have

∇X(F (Y, Z)) +∇Y (F (Z,X)) +∇Z(F (X, Y )) = 0.
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10. Notation as in problem 4a. Let C be the (image of) a geodesic in (R2
+, g1). Show

that C is either (i) a subinterval of a vertical line or (ii) an arc lying in a semicircle
whose endpoints are on the x-axis (i.e. a semicircle of the form {(x − a)2 + y2 =
r2, y ≥ 0}).
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