Differential Geometry—MTG 6257—Spring 2000 Problem Set 1

Notation for all the problems below. Unless otherwise specified, (M, g) is a Riemannian manifold of dimension n. Summation notation for repeated indices is used.

1. Let $\{\theta^i\}_1^n$ be a locally-defined orthonormal basis of 1-forms. Prove that there is a *unique* antisymmetric $n \times n$ matrix B of locally-defined 1-forms such that $d\theta^i + B^i{}_j \wedge \theta^j = 0, i = 1, ..., n$.

2. Let \tilde{g} be a metric on M conformally related to g; thus $\tilde{g} = e^{2f}g$ for some function $f : M \to \mathbf{R}$. Let $\nabla, \tilde{\nabla}$ be the Levi-Civita connections on TM induced by g, \tilde{g} respectively. Prove that for all vector fields X, Y on M,

$$\tilde{\nabla}_X Y = \nabla_X Y + X(f)Y + Y(f)X - g(X,Y)\operatorname{grad}_g(f),$$

where grad_q denotes gradient taken with respect to g.

3. (Notation as in problem 2.) Let $\{e_i\}$ be a local g-orthonormal basis of TM, and let $\tilde{e}_i = e^{-f}e_i$. Let $\{\theta^i\}, \{\tilde{\theta}^i\}$ be the local bases of T^*M dual to $\{e_i\}, \{\tilde{e}_i\}$ respectively, and let $\Theta, \tilde{\Theta}$ be the (matrix-valued) connection forms relative to $\{e_i\}, \{\tilde{e}_i\}$ respectively.

- (a) Show that $\{\tilde{e}_i\}$ is \tilde{g} -orthonormal.
- (b) Show that $\tilde{\theta}^i = e^f \theta^i$, i = 1, ..., n. (c) Show that $\tilde{\Theta}^i_j = \Theta^i_{\ j} - \iota_{\text{grad}_{ef}}(\theta^i \wedge \theta^j)$.

4. (a) Let $\mathbf{R}^2_+ = \{(x, y) \in \mathbf{R}^2 \mid y > 0\}$, also called the *upper half-plane*. Let g_1 be the Riemannian metric $(dx^2 + dy^2)/y^2$ (recall that dx^2 means $dx \otimes dx$). Compute the Gauss curvature K(x, y) for the Riemannian manifold (\mathbf{R}^2_+, g_1) .

(b) Let D^2 be the open unit disk in \mathbf{R}^2 , i.e. $\{(x,y) \in \mathbf{R}^2 \mid x^2 + y^2 < 1\}$. Let g_2 be the Riemannian metric

$$\frac{4}{(1-r^2)^2}(dx^2+dy^2),$$

where $r^2 = x^2 + y^2$. Compute the Gauss curvature K(x, y) for the Riemannian manifold (D^2, g_2) .

(c) Find an isometry $F : (\mathbf{R}^2_+, g_1) \to (D^2, g_2)$ (i.e. a diffeomorphism for which $F^*g_2 = g_1$).

(d) Let c > 0. Find a metrics on (i) \mathbf{R}^2_+ , and (ii) D^2 , each of which has constant Gauss curvature $-c^2$.

5. Let $\gamma : [a, b] \to M$ be a smoothly parametrized curve for which γ' is nowhere zero. (a) Prove that there exists a smooth reparametrization of γ , say $\tilde{\gamma}$, with the same orientation as γ and for which $\|\tilde{\gamma}'\| \equiv 1$. (This is called a *unit-speed parametrization* or an *arclength parametrization*.) (b) Prove that if \tilde{g}_1 and \tilde{g}_2 are two such reparametrizations, then their parameters differ by a constant: $\tilde{\gamma}_2(t) = \tilde{\gamma}_1(t+c)$ for some constant c. 6. Let (Z, \tilde{g}) be a Riemannian manifold, $M \subset Z$ a submanifold, $\iota : M \to Z$ the inclusion map, and $g = \iota^* \tilde{g}$ (the Riemannian metric on M induced from (Z, \tilde{g}) —the restriction of \tilde{g} to vectors tangent to M). For $p \in M$, let $\pi : T_{\iota(p)}Z \to T_pM$ be the orthogonal projection defined by \tilde{g} . Consider the two connections $\nabla^{(1)}, \nabla^{(2)}$ on (M, g) defined below.

(i) $\nabla^{(1)}$ = the Levi-Civita connection of (M, g).

(ii) $\nabla^{(2)} =$ the operator defined as follows. Let $p \in M$ and let X, Y be vector fields defined on a neighborhood U^M of p in M. Let \tilde{X}, \tilde{Y} be extensions of ι_*X, ι_*Y to a neighborhood U^Z of $\iota(p)$ in Z. Define

$$(\nabla_X^{(2)}Y)|_p = \pi(\nabla_{\tilde{X}}^Z \tilde{Y}|_{\iota(p)})$$

where ∇^Z is the Levi-Civita connection of the metric \tilde{g} on TZ. Show that $\nabla^{(2)}_X Y$ is well-defined (i.e. is independent of the choices of extensions) and that $\nabla^{(2)} = \nabla^{(1)}$.

7. Let U be an open neighborhood of the origin in \mathbf{R}^2 , $f: U \to \mathbf{R}$ a smooth function, and let $M \subset \mathbf{R}^3$ be the graph of f. Assume that f(0,0) = 0 and that $D_{(0,0)}f = 0$, so that M passes through the origin and has horizontal tangent plane there. Give \mathbf{R}^3 the standard metric, let $\mathbf{i}, \mathbf{j}, \mathbf{k}$ be the usual unit vectors in \mathbf{R}^3 , and let \hat{h} be the second fundamental form of M with respect to the unit normal vector field whose value at the origin is \mathbf{k} . Let H be the Hessian of f at (0,0) (the matrix of second partials); since f and its first partials vanish at (0,0), Taylor's Theorem implies that near (0,0),

$$f(x,y) = \frac{1}{2}(x,y)H\begin{pmatrix} x\\ y \end{pmatrix}$$
 + higher order terms.

Show that at the origin, H is also the matrix of \hat{h} with respect to the basis $\{e_1 = \mathbf{i}, e_2 = \mathbf{j}\}$ of $T_{(0,0,0)}M$. (I.e., show that $\hat{h}(e_i, e_j) = (\partial^2 f / \partial x^i \partial x^j)(0, 0)$.)

8. Let V be a finite-dimensional vector space, g an inner product on V, h an arbitrary bilinear form on V. Let \mathbf{g}, \mathbf{h} be the linear maps $V \to V^*$ induced by g, h respectively; \mathbf{g} is an isomorphism but \mathbf{h} need not be. Define $S: V \to V$ by $S = \mathbf{g}^{-1} \circ \mathbf{h}$. Show that S is the unique endomorphism of V for which

$$h(X,Y) = g(X,S(Y))$$

for all $X, Y \in V$.

9. Let E be a vector bundle over M with connection ∇ and curvature F. Let ∇ also denote the induced connection on the endomorphism bundle $\operatorname{End}(E)$. Recall that the *Bianchi identity* asserts that $d_{\nabla}F = 0$, where F is viewed as an $\operatorname{End}(E)$ -valued 2-form and where $d_{\nabla} : \Omega^2(\operatorname{End}(E)) \to \Omega^3(\operatorname{End}(E))$ is covariant exterior derivative. Show that the Bianchi identity is equivalent to the assertion that for all vector fields X, Y, Z on M, we have

$$\nabla_X(F(Y,Z)) + \nabla_Y(F(Z,X)) + \nabla_Z(F(X,Y)) = 0.$$

10. Notation as in problem 4a. Let C be the (image of) a geodesic in (\mathbf{R}_+^2, g_1) . Show that C is either (i) a subinterval of a vertical line or (ii) an arc lying in a semicircle whose endpoints are on the x-axis (i.e. a semicircle of the form $\{(x - a)^2 + y^2 = r^2, y \ge 0\}$).