
Differential Geometry—MTG 6257—Spring 2000
Problem Set 2: Normal Coordinates

Notation for all the problems below. Unless otherwise specified, (M, g) is
a Riemannian manifold of dimension n. Summation notation for repeated indices is
used.

Definition 1. Let p ∈ M . A normal neighborhood of p is the diffeomorphic image,
under expp, of a ball Bε(0) ⊂ TpM for some ε > 0 (the radius of U).

Definition 2. Let p ∈ M and let U be a normal neighborhood of p. Let e = {ei}n1
be an orthonormal basis of TpM . Let r be the radius of U . Define a diffeomorphism

φe : (Br(0) ⊂ Rn) → U

(x1, . . . , xn) 7→ expp(x
iei).

Then (U, φ−1
e ) is a coordinate chart, and the functions xi ◦ φ−1

e are called (a system
of) normal coordinates on U , centered at p.

Problems

1. Notation as in Definition 2.
(a) Show that

∂

∂xi
|p = ei.

(b) Show that at the center point p,

∇ ∂

∂xi

∂

∂xj
= 0.

(c) Let |x| = (
∑

(xi)2)1/2. Show that for q ∈ U , |x|(q) = dist(q, p).

2. Let U be a normal neighborhood of p, and let {xi}, {yi} be two systems of normal
coordinates on U centered at p. Show that there exists a constant orthogonal matrix
A relating the two coordinate systems (yi = Aijx

j).

3. In this problem you will use the Jacobi equation to show that the Riemann tensor
determines the Taylor expansion of the metric in normal coordinates, and you will
determine the first few terms of the expansion. Below, U is a normal neighborhood
centered at p, B is the corresponding ball in TpM , e is an orthonormal basis of TpM ,
and {xi} are the corresponding normal coordinates on U .

Let x = xiei (so that expp(x) is exactly the point whose normal coordinates are
(x1, . . . , xn)), let v = viei ∈ TpM , and let α(s, t) = ᾱs(t) = expp(t(x + sv)). For

each s, ᾱs is a geodesic, so α is a variation of α0 through geodesics, and V := α∗
∂
∂s

is a Jacobi field along γ := ᾱ0. Let T = γ′, and for any vector field W along γ, let
W ′ = ∇TW .
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(a) Check that V (0) = 0, V ′(0) = v, and V (1) = vi ∂
∂xi
|expp(x).

(b) Let f(t) = ‖V (t)‖2, so that

f ′(t) = 2(V, V ′)

f ′′(t) = 2(V, V ′′) + 2(V ′, V ′),

f ′′′(t) = 2(V, V ′′′) + 6(V ′, V ′′),

f ′′′′(t) = 2(V, V ′′′′) + 8(V ′, V ′′′) + 6(V ′′, V ′′),

etc. Using the Jacobi equation V ′′ = R(T, V )T , show that the mth derivative f (m)(t)
can be computed from V, V ′, the Riemann tensor R, and the covariant derivatives
(∇T )iR up to order m− 2.

(c) With f as above, show that f(0) = 0 = f ′(0) = f ′′′(0) and that f ′′(0) = 2‖v‖2,
f ′′′′(0) = 8(R(T, v)T, v)|0 = −8Rikjlv

ivjxkxl, where {Rikjl} are the components of
the Riemann tensor at p in the basis {ei}. (There is no misprint in the order of the
indices above; the v′s are paired with the first and third indices of R, and the x’s
with the second and fourth.) Hence show that

f(t) = t2‖v‖2 − 1

3
t4Rikjlv

ivjxkxl +O(t5‖v‖2)

= t2vivj(δij −
1

3
t2Rikjlv

ivjxkxl +O(t3)).

(d) Using (a) and (c), show that the metric coefficients gij(x) := ( ∂
∂xi
, ∂
∂xj

) satisfy

gij(x) = δij −
1

3
Rikjlx

kxl +O(|x|3).

4. Let {xi} be local coordinates (not necessarily normal coordinates) on an open set
U ⊂M , let {ei} be an orthonormal basis of TM over U , and let {θi} be the basis of
T ∗M dual to {ei}. Let A be the matrix-valued function relating the bases {dxi}, {θi}
of T ∗M : dxi = Aijθ

j.

(a) Express dx1 ∧ . . . ∧ dxn in terms of A and θ1 ∧ . . . ∧ θn. (You have done this
before.)

(b) Express the matrix g·· of metric coefficients gij = ( ∂
∂xi
, ∂
∂xj

) in terms of the
matrix A.

(c) Assume that M is oriented and that {xi} is a positively oriented coordinate
system. Show that the volume form volg can be expressed in these local coordinates
by

volg =
√

det(g··) dx
1 ∧ . . . ∧ dxn.
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5. Assume M is oriented.

(a) Use the results from the preceding problems to show that in positively-oriented
normal coordinates {xi},

volg = (1− 1

6
Rklx

kxl +O(|x|3))dx1 ∧ . . . ∧ dxn,

where {Rkl} are the components of the Ricci tensor at p in the basis {dxi}. (You will
also want to use the formula derived in homework last semester for the directional
derivatives of the determinant function det : Mn(R)→ R.)

(b) Let {yi} be standard coordinates on Rn, let Sn−1 be the unit sphere with the
induced metric, let ω ∈ Ωn−1(Sn−1) be the volume form, and let Vn−1 =

∫
Sn−1 ω (the

volume of the sphere). Show that∫
Sn−1

yiyjω =
1

n
δijVn−1.

(There is a way to do this that does not involve any trigonometric integrals.)

(c) Last semester you showed for homework that on the complement of the origin
in Rn, dy1∧ . . .∧dyn = rn−1dr∧ ω̃, where ω̃ = π∗ω is the pullback of ω via the radial
projection π : y 7→ y/|y| (rn−1dr ∧ ω̃ is the n-dimensional version of the “r dr dθ”
formula for the area form on R2). Let Sn−1

r (p) ⊂ M denote the sphere of radius r
centered at p in M (i.e. the image under expp of the sphere {xiei | |x| = r} ⊂ TpM),
where r is taken small enough that Sn−1

r (p) lies in a normal neighborhood of p. Show
that

Vol(Sn−1
r (p)) = Vn−1(1− 1

6n
R(p)r2 +O(r3)),

where R(p) is the scalar curvature at p. This quantifies, in terms of volume, the state-
ment “larger curvature means smaller spheres” and shows that the scalar curvature
provides the dominant correction to the Euclidean formula.

(d) With r as above, let Br(p) ⊂ M denote the ball of radius r centered at p.
Derive the analogous asymptotic expansion of Vol(Br(p)) (to order r2 as above).

6. Let U be a normal neighborhood centered at p ∈M , let {xi} be normal coordinates
centered at p. Let r = |x|; note that dr = (

∑
xidxi)/r. Recall the Gauss Lemma

proved in class: the “radial” geodesics t 7→ expp(tv) (v ∈ TpM) are orthogonal to the
spheres Sn−1

r0
(p) contained in a normal neighborhood centered at p (notation as in

problem 5c).

(a) Use the facts above to prove that on U − {p}, the metric g can be written
in “polar normal coordinates” as dr2 + gr, where for each fixed r, gr is the pullback
of some metric on Sn−1. (Example: M = R2 = U with the standard metric, p = 0;
the standard coordinates are normal coordinates centered at p. The metric can be
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written as dr2 + r2dθ2. In this example, gr = r2dθ2 [generally gr will not be of the
form (function of r)×(fixed metric on sphere) unless (M, g) has a lot of symmetry].
Were radial lines not orthogonal to circles centered at the origin, there would be a
term propotional to dr ⊗ dθ + dθ ⊗ dr in the metric.)

(b) Let g·· be the matrix of g in normal coordinates. Show that gij(x)xj = xi (i.e.
the vector with components {xi} is an eigenvector of g·· with eigenvalue 1). Thus if
we write gij(x) = δij +hij(x), as in problem 3d, we have hij(x)xj = 0. Check directly
that the O(|x|2)-term in the formula in problem 3d has this property.

7. Let M = Sn, embedded the standard way in Rn+1. Let {yi} be standard co-
ordinates on Rn+1 and let p be the “north pole” (0, . . . , 0, 1); there is a natural
identification of TpM with the hyperplane {yn+1 = 1} ⊂ Rn+1. Let {ei} be the or-
thonormal basis of TpM agreeing with ∂/∂yi for 1 ≤ i ≤ n. Let r : M → R denote
distance to p.

(a) Show that r is the “latitude-from-the-north-pole” angle: r(q) = cos−1(p · q),
where on the right-hand side of this formula the points p, q ∈ Sn are viewed as unit
vectors in Rn+1.

(b) Let U = Sn − {south pole} and let {xi} be the normal coordinates on U
determined by {ei}. Express the Rn+1-coordinate functions yi : Sn → R (1 ≤ i ≤
n+ 1) in terms of the xi.

(c) Show that in “polar normal coordinates” the metric on Sn takes the form
dr2 + f(r)2g0 (see problem 6a), where g0 is the standard metric on Sn−1. Give f(r)
explicitly. (You can do this problem by explicit computation, using part (b), unless
you see a clever way to avoid the computation.)

(d) Recall that the Riemann tensor on Sn satisfies Rijkl = gikgjl− gilgjk. Use this
to compute the scalar curvature of Sn.

(e) Using part (c), show that the volumes of Sn−1
r (p) ⊂ Sn and Br(p) ⊂ Sn are

of the form Vn−1h(r) (notation as in problems 5bc), and in each case give the Taylor
expansion of h(r) to order r2. Using part (d), check that your expansions agree with
your answers to problems 5cd.
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