
Differential Geometry—MTG 6257—Spring 2000
Problem Set 3: Lie Groups and related topics

Notation for all the problems below. Unless otherwise specified, G and H
are Lie groups with Lie algebras g and h respectively. Identity elements of groups are
denoted e. Summation notation for repeated indices is used.

1. Assume G is connected, and let G̃ be the universal covering space of G, with
π : G̃ → G the covering map. Recall that in class we defined a multiplication map
G̃× G̃→ G̃ as follows. Fix ẽ ∈ π−1(e). Given g̃i ∈ G̃ (i = 1, 2), let γ̃i : [0, 1]→ G̃ be
a path in G̃ from ẽ to g̃i. Let gi = π(g̃i), γ̃i(t) = π(γi(t)), and let γ(t) = γ1(t)γ2(t).
Let γ̃ be the unique lift of γ to G̃ with γ̃(0) = ẽ. Then we declare g̃1g̃2 = γ̃(1). In
class we proved that this construction is independent of the choices of γ̃1, γ̃2, so that
the multiplication map is well-defined.

(a) Prove that G̃ is a group with respect to this multiplication map, with identity
ẽ.

(b) Prove that the kernel of π is contained in the center of G̃. (The center of group
is the subgroup consisting of all elements that commute with every group element.)

2. (a) Explicitly identify the subspaces of Mn(R) corresponding to sl(n,R), the Lie
algebra of SL(n,R).

Let Mn(C) be the space of n × n complex matrices. Explicitly identify the sub-
spaces of Mn(C) corresponding to the Lie algebras of (b) U(n), (c) SU(n), and (d)
Sp(n). (These Lie algebras are denoted u(n), su(n), and sp(n) respectively.)

3. Let ρ : G → H be a Lie-group homomorphism, let ρ̇ : g → h be the induced
Lie-algebra homomorphism, and let K ⊂ G, k ⊂ g be the kernels of ρ, ρ̇ respectively.

(a) Prove that K is a Lie group. (Don’t spend time proving that K is a group;
it’s the “Lie” part that I want you to prove. I know that you know how to prove that
the kernel of a group-homomorphism is a group.)

(b) Prove that k is the Lie algebra of K.

(c) Prove that k is an ideal in g.

4. Let M be a manifold, E a distribution on M . Let E⊥ ⊂ T ∗M be the subbundle
defined by E⊥p = {θ ∈ T ∗pM | θ(X) = 0 ∀X ∈ Ep} (the annihilator of Ep). Let
I ⊂ Ω∗(M) be the ideal generated by Γ(E⊥) (i.e. I is the space of linear combinations
of differential forms of the form ω ∧ θ, where θ ∈ Γ(E⊥).) Let dI be the image of
d : I → Ω∗(M). Prove that E is involutive if and only if dI ⊂ I.

5. Calculate the exponential map explicitly for (a) SU(2), (b) SO(3), and (c)
SL(2,R). (All of these are three-dimensional Lie groups. In each case, choose a
way of writing a typical Lie-algebra element X in terms of three real parameters,
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and then give an explicit formula for exp(X) that does not involve an infinite series.
From class, we know that so(3) consists of the skew-symmetric 3 × 3 matrices; use
the relevant parts of problem 2 above for the other two Lie algebras).

6. Recall the “polar decomposition” of an invertible matrix from undergraduate
linear algebra: any invertible matrix A can be written as a product RS, where R
is an orthogonal matrix and S is a symmetric positive-definite matrix. Here S is
the unique positive-definite square root of AtA; this depends continuously on A, and
hence so does R.

(a) Use the polar decomposition to show that there is a strong deformation re-
traction from SL(2, R) to SO(2). (A strong deformation retraction from a topological
space A to a subspace B is a continuous map A→ B that is homotopic to idA through
maps that restrict to the identity on B.) Use this to show that SL(2,R) is connected.

(b) Show that the exponential map sl(2,R) → SL(2,R) is not surjective. Thus
SL(2,R) is an example of a connected Lie group for which the exponential map is
not surjective (its image still generates, but is not equal to the group).

7. Let G be any group acting transitively on a set S from the left.
(a) Show that for any two elements p1, p2 ∈ S, the stabilizers of p1 and p2 are

conjugate (i.e. letting Hi denote the stabilizers, there exists g ∈ G such that H2 =
gH1g

−1, the image of H1 under Adg).
(b) Let p0 ∈ S. Show that the choice of p0 determines a natural bijection S ↔

G/H, where H = Stab(p0).

8. (a) Let E be a tensor bundle over G, and let S ∈ Ee be Ad-invariant. Prove
that the left-invariant and right-invariant extensions of S are bi-invariant and equal
to each other. Deduce as a corollary that G admits a bi-invariant Riemannian metric
iff g admits an Ad-invariant inner product.

(b) Suppose he is an Ad-invariant inner product on TeG = g. Show that for all
X, Y, Z ∈ g, we have he(adX(Y ), Z) = −he(Y, adX(Z)).

(c) With he as in (b), define ωe ∈ g∗⊗g∗⊗g∗ by ωe(X,Y, Z) = he(X, [Y, Z]). Show
that ωe lies in the totally alternating subspace

∧3
g∗. Hence show that ω extends to

a bi-invariant 3-form on G.

9. The center of g is z(g) = {X ∈ g | [X, Y ] = 0 ∀Y ∈ g}. The center of G is
Z(G) = {g ∈ G | gh = hg ∀h ∈ G}. Prove that Z(G) is a closed Lie subgroup of G
with Lie algebra z(g). Deduce that Z(G) is 0-dimensional (equivalently, discrete) iff
z(g) is trivial (i.e. {0}).

10. (On next page)
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10. In class we proved that if G is compact, then G admits a bi-invariant Riemannian
metric. In this problem you will prove a partial converse to this fact. Each part below
uses the preceding part. If there’s any part you can’t do, assume it and move on to
the next part.

Assume that G admits a bi-invariant metric h, and let ∇ be the Levi-Civita
connection and R the Riemann curvature tensor determined by h.

(a) Prove that if X and Y are left-invariant vector fields, then ∇XY = 1
2
[X, Y ].

Deduce as a corollary that the integral curves of a left-invariant vector field are
geodesics. (Thus the exponential map in Riemannian geometry is a generalization of
the exponential map on a Lie group admitting a bi-invariant metric.)

(b) Show that if X, Y , and Z are left-invariant vector fields, then R(X, Y )Z =
1
4
[[X, Y ], Z].

(c) Let X and Y be left-invariant vector fields. Show that at any point g ∈ G, we
have h(R(X, Y )Y,X) = 1

4
‖[X, Y ]|e‖2. Deduce from this that the sectional curvatures

of G are all non-negative.

(d) Let Ric be the Ricci tensor. Show that if X ∈ g = TeG and X is not in the
center of g, then Ric(X,X) > 0.

(e) Show that if the center of g is trivial (i.e. z(g) = {0}), then there exists c > 0
such that for all unit vectors v ∈ TG, we have Ric(v, v) ≥ c.

(f) Use Myers’ Theorem to conclude that if G admits a bi-invariant metric and the
center of G is 0-dimensional (equivalently, if g admits an Ad-invariant inner product
and the center of g is trivial), then G is compact.
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