
Differential Geometry II—MTG 6257—Spring 2013
Problem Set 1

1. Let (M, g) be the sphere (Sn, gstd), where gstd (henceforth simply g) is the Rie-
mannian metric inherited by restriction from the standard Riemannian metric gEuc

on Rn+1.

(a) Let x ∈ Sn. Under the canonical identification of TxR
n+1 with Rn+1, with

what subspace of Rn+1 is TxS
n identified (in terms of x)?

(b) Recall that the canonical identification of each tangent space of Rn+1 with
Rn+1 gives us an identification of {vector fields on Rn+1} with {Rn+1-valued functions
on Rn+1}. This identification gives meaning to the notion of “constant vector field”
on Rn+1, namely a vector field that corresponds to a constant Rn+1-valued function.
For each v ∈ Rn+1, let Ỹ (v) be the corresponding “constant” vector field on Rn+1, and
let Y (v) be the (tangent) vector field on Sn defined by Y (v)(x) := Y

(v)
x := πx(Ỹ

(v)
x ),

where πx : TxR
n+1 → TxS

n is orthogonal projection.
For each v ∈ Rn+1, also define a function fv : Sn → R by fv(x) = v · x (ordinary

dot-product).
Recall that for any real-valued function f on a Riemannian manifold (N, h), the

gradient of f , denoted grad f , is the vector field on N defined at each p ∈ N to be
the unique vector satisfying

hp((grad f)|p, u) = 〈df |p, u〉 ∀u ∈ TpN.

For the Riemannian manifold (Sn, g), show that, for each v ∈ Rn+1,

grad fv = Y (v)

(c) Let ∇ be the Levi-Civita connection on (Sn, g). Let v, w ∈ Rn+1, and let
V = Y (v), W = Y (w). Compute ∇VW explicitly as an algebraic expression in terms
of V,W, fv, and fw. (Not all of these four objects may enter your formula. “Algebraic
expression” here means something whose value at each x ∈ Sn is given explicitly by
the values Vx,Wx, fv(x), and/or fw(x).)

(d) Using part (c) and the fact that ∇ is torsion-free, express the Lie bracket
[V,W ] explicitly as an algebraic expression in terms of V,W, fv, and fw (where V,W
are as in (c)).

(e) Let z ∈ Rn+1, let Z = Y (z), let V,W be as above, and let K be the curvature
of ∇. Using the calculations above, show that

K(V,W )(Z) = g(W,Z)V − g(V, Z)W.
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2. Let ∇ be a connection on a vector bundle E over a manifold M . The connection
∇ is called flat if its curvature K is identically zero (i.e. if K(X, Y )(s) = 0 ∈ Γ(E)
for all vector fields X, Y on M and all sections s of E).

Let M be an arbitrary manifold and let E be the product bundle M×Rk over M .
In class we defined a connection ∇ on E by identifying sections s of E with Rk-valued
functions fs, and setting (∇Xs)p = Xp(fs). Show that this connection is flat.

3. Let E be a vector bundle over a manifold M , and let s ∈ Γ(E). Show that s is an
embedding of the manifold M into the manifold E.

4. Let E be a vector bundle of rank k over a manifold M , and let∇ be a connection on
E. Let Matk×k(R) denote the space of all k× k matrices with real entries, and recall
that GL(k,R) is the set of all invertible such matrices, an open subset of Matk×k(R)

Let U ⊂ M be open, and assume that E|U has a basis of sections {s1, . . . , sk}.
Let {s′1, . . . , s′k} be another basis of sections of E|U . Necessarily, the second basis is
related to the first basis by

s′µ =
k∑
ν=1

sνG
ν
µ, 1 ≤ µ ≤ k,

for a unique, smooth function G : U → GL(k,R) ⊂ Matk×k(R). (At each p ∈ U , the
Gν

µ(p) are the entries of G(p).)
Let Θ,Θ′ be the connection forms of ∇ relative to the bases {s1, . . . , sk} and

{s′1, . . . , s′k}, respectively. Show that

Θ′ = G−1ΘG+G−1dG, (1)

where G−1 and G are treated as matrices whose entries are real-valued functions;
Θ, Θ′, and dG are treated as matrices whose entries are real-valued 1-forms; and
(dG)µν = d(Gµ

ν). Helpful observation: (1) is equivalent to

Θ′(X) = G−1Θ(X)G+G−1X(G) ∀X ∈ Γ(TM |U). (2)

In (2), all of the objects Θ′(X),Θ(X), G−1, G, and X(G) may be viewed either as
Matk×k-valued functions, or as matrices whose entries are real-valued functions. In
the former point of view, at each p ∈ U , Xp(G) is the directional derivative of the
Matk×k-valued function G in the direction Xp ∈ TpM ; in the latter point of view,
Xp(G) is a matrix whose (µ, ν)th entry is Xp(G

µ
ν).
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