Differential Geometry II—MTG 6257—Spring 2013 Problem Set 2

1. Let M be the open ball of radius 1 in \mathbb{R}^n , centered at the origin. Let $r : \mathbb{R}^n \to \mathbb{R}$ denote distance to the origin. Let g_{Euc} be the standard Riemannian metric on \mathbb{R}^n , restricted to the open set M. Then define a metric g on M by

$$g = rac{4}{(1-r^2)^2} g_{\mathrm{Euc}} \; .$$

Show that M has constant curvature -1. This Riemannian manifold is called the *Poincaré disk* or (the Poincaré model of) hyperbolic n-space.

2. Let (M, g) be a Riemannian manifold. Let c be a positive constant and let $g_{\text{rescaled}} = c^2 g$.

(a) Show that the Riemann tensors of (M, g) and (M, g_{rescaled}) are identical. (Here, "Riemann tensor" means the "R(X, Y)Z" version, not the "g(R(X, Y)Z, W)" version.)

(b) Let σ and σ_{rescaled} be the sectional-curvature functions of (M, g) and (M, g_{rescaled}) . Show that $\sigma_{\text{rescaled}} = c^{-2}\sigma$.

Note: You may be wondering why I bothered to write the rescaling factor as c^2 rather than just c. The reason is that if g is rescaled by c^2 , then distances are rescaled by c, which is more in keeping with the usual meaning of "rescaling". The sphere of radius c in \mathbf{R}^{n+1} is isometric to the unit sphere with metric c^2g_{std} , where g_{std} is the standard metric on S^n .