Differential Geometry II—MTG 6257—Spring 2013
Problem Set 3

1. Let (M, g) be Riemannian manifold, let {e;}} be a local basis of sections of T'M,
defined on U C M, and let © be the connection form of the Levi-Civita connection
with respect to this local basis. Let {6'} be the dual basis of sections of T*M on U.

(a) Show that

di' = -0"; A0, 1<i<n. (1)

(In case you have forgotten the following useful identity: for any real-valued 1-form
w and vector fields X, Y, we have dw(X,Y) = X(w(Y)) — Y(w(X)) — w([X,Y]).)

(b) Assume now that {e;}} is orthonormal (at each point of U). Recall that this
implies that ©, viewed as a matrix of real-valued 1-forms, is antisymmetric. Show
that © is the unique antisymmetric matrix of real-valued 1-forms such that (1) holds.

2. Let (M,g) be a Riemannian manifold, U C M, and suppose that {6}, are
1-forms on U such that g = 1" | 6" ® 6°. (For example, the Euclidean metric on R"
can be written as Y, dz* ® dz'.) Show that (a) the set {#’[,} is linearly independent,
and hence a basis of TxU, for all p € U, and that (b) that if {e;}} is the dual basis of
local sections of T'M, then {e;} is orthonormal (at each point).

Hence whenever ¢ is expressed in the form g = Y7 0" ® 6%, the set {6'} is
automatically dual to an orthonormal basis of local sections of T'M. This, combined
with problem 1, often gives a faster way of finding a connection form © than by
computing covariant derivatives or Christoffel symbols. (This is a hint to help you
do problem 3c efficiently.)

3. Surfaces. Let (M, g) be a two-dimensional Riemannian manifold. Let {e1, e} be
a local orthonormal basis of T'M, defined on U C M, and let © be the connection
form of the Levi-Civita connection with respect to this local basis.

(a) Show that the matrix-valued 2-form representing the Riemann tensor in this

basis is
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(b) Let {6',6?} be the local basis of T*M dual to {e1, es}. Then dO'y = K6 A 9>
for some unique function K : U — R. Show that, in terms of the components of
the Riemann tensor in the given bases, K = R'9;5 = Ris12. From this, show that
at each p € U, K(p) is the sectional curvature of M in the (unique) 2-dimensional
subspace of T,M. In particular, K is independent of the choice of local bases, and
the construction above yields a well-defined function K : M — R. This function
K : M — R is called the Gaussian curvature. (Note: the scalar-valued function K in
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this problem is not the same as what we used this letter for in class, which was the
endomorphism-valued curvature two-form of a general connection. “K” just happens
to be the letter most commonly used for Gaussian curvature.)

(c) Let H* = {(x,y) € R* | y > 0}. Define a metric gny, on H by
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Show that (H?, gnyp) has constant curvature —1. This Riemannian manifold is
called the upper-half-plane model of hyperbolic 2-space.

Remark. For n > 2, we can analogously define H" = {(z!,...,2") € R" | 2" >
0}, and the metric

1
Ghyp = WgEuc

on H"™. The manifold (H", gnyp) has constant curvature —1, and is called the upper-
half-space model of hyperbolic n-space. The method used to compute the curvature
for the case n = 2 can be used for general n > 2, but only for n = 2 does the “© A ©”
term in the “d© + © A ©” expression for the curvature vanish as it did in problem 3a.

4. Let (M, g) be a Riemannian manifold, / C R an interval, and y : [ — M a smooth
curve for which +/(t) is nowhere zero and such that

Vo =y
for some function f : I — R. Show that + can be reparametrized as a geodesic. l.e.
show that there exists an interval J and a diffeomorphism ¢ : J — I such that yo ¢
is a geodesic. (Hint: just as in Calculus 3, any curve with nonvanishing velocity can
be reparametrized by arclength.)

5. Let (H?,g) be as in problem 3c.

(a) Let 2o € R, and let C' be an open semicircle in the upper half-plane centered
at (zg,0) (ie. {(z,y) € H* | (x — x0)*> + y*> = R?} for some R > 0). Choose a
parametrization v of C'. Show that 7 can be reparametrized as a geodesic.

(b) Same as part (a), but for the vertical ray C' = {(zo,y) | y > 0}.

Remark. It is easy to see that given a point p in the upper half-plane, and a
non-vertical straight line ¢ through (z1,y;), there exists a unique circle centered on
the z-axis that is tangent to ¢ at p. It follows that the image of every geodesic in
(H?, gnyp) has image lying in one of the semicircles or vertical rays considered above.



