
Differential Geometry II—MTG 6257—Spring 2013
Problem Set 3

1. Let (M, g) be Riemannian manifold, let {ei}n1 be a local basis of sections of TM ,
defined on U ⊂ M , and let Θ be the connection form of the Levi-Civita connection
with respect to this local basis. Let {θi} be the dual basis of sections of T ∗M on U .

(a) Show that

dθi = −Θi
j ∧ θj, 1 ≤ i ≤ n. (1)

(In case you have forgotten the following useful identity: for any real-valued 1-form
ω and vector fields X, Y , we have dω(X, Y ) = X(ω(Y ))− Y (ω(X))− ω([X, Y ]).)

(b) Assume now that {ei}n1 is orthonormal (at each point of U). Recall that this
implies that Θ, viewed as a matrix of real-valued 1-forms, is antisymmetric. Show
that Θ is the unique antisymmetric matrix of real-valued 1-forms such that (1) holds.

2. Let (M, g) be a Riemannian manifold, U ⊂ M , and suppose that {θi}ni=1 are
1-forms on U such that g =

∑n
i=1 θ

i ⊗ θi. (For example, the Euclidean metric on Rn

can be written as
∑

i dx
i⊗ dxi.) Show that (a) the set {θi|p} is linearly independent,

and hence a basis of T ∗pU , for all p ∈ U , and that (b) that if {ei}n1 is the dual basis of
local sections of TM , then {ei} is orthonormal (at each point).

Hence whenever g is expressed in the form g =
∑n

i=1 θ
i ⊗ θi, the set {θi} is

automatically dual to an orthonormal basis of local sections of TM . This, combined
with problem 1, often gives a faster way of finding a connection form Θ than by
computing covariant derivatives or Christoffel symbols. (This is a hint to help you
do problem 3c efficiently.)

3. Surfaces. Let (M, g) be a two-dimensional Riemannian manifold. Let {e1, e2} be
a local orthonormal basis of TM , defined on U ⊂ M , and let Θ be the connection
form of the Levi-Civita connection with respect to this local basis.

(a) Show that the matrix-valued 2-form representing the Riemann tensor in this
basis is (

0 dΘ1
2

−dΘ1
2 0

)
. (2)

(b) Let {θ1, θ2} be the local basis of T ∗M dual to {e1, e2}. Then dΘ1
2 = Kθ1 ∧ θ2

for some unique function K : U → R. Show that, in terms of the components of
the Riemann tensor in the given bases, K = R1

212 = R1212. From this, show that
at each p ∈ U , K(p) is the sectional curvature of M in the (unique) 2-dimensional
subspace of TpM . In particular, K is independent of the choice of local bases, and
the construction above yields a well-defined function K : M → R. This function
K : M → R is called the Gaussian curvature. (Note: the scalar-valued function K in
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this problem is not the same as what we used this letter for in class, which was the
endomorphism-valued curvature two-form of a general connection. “K” just happens
to be the letter most commonly used for Gaussian curvature.)

(c) Let H2 = {(x, y) ∈ R2 | y > 0}. Define a metric ghyp on H by

ghyp =
1

y2
gEuc =

dx⊗ dx+ dy ⊗ dy
y2

=

(
dx

y

)
⊗
(
dx

y

)
+

(
dy

y

)
⊗
(
dy

y

)
.

Show that (H2, ghyp) has constant curvature −1. This Riemannian manifold is
called the upper-half-plane model of hyperbolic 2-space.

Remark. For n > 2, we can analogously define Hn = {(x1, . . . , xn) ∈ Rn | xn >
0}, and the metric

ghyp =
1

(xn)2
gEuc

on Hn. The manifold (Hn, ghyp) has constant curvature −1, and is called the upper-
half-space model of hyperbolic n-space. The method used to compute the curvature
for the case n = 2 can be used for general n ≥ 2, but only for n = 2 does the “Θ∧Θ”
term in the “dΘ + Θ∧Θ” expression for the curvature vanish as it did in problem 3a.

4. Let (M, g) be a Riemannian manifold, I ⊂ R an interval, and γ : I →M a smooth
curve for which γ′(t) is nowhere zero and such that

∇γ′γ′ = fγ′

for some function f : I → R. Show that γ can be reparametrized as a geodesic. I.e.
show that there exists an interval J and a diffeomorphism φ : J → I such that γ ◦ φ
is a geodesic. (Hint: just as in Calculus 3, any curve with nonvanishing velocity can
be reparametrized by arclength.)

5. Let (H2, g) be as in problem 3c.

(a) Let x0 ∈ R, and let C be an open semicircle in the upper half-plane centered
at (x0, 0) (i.e. {(x, y) ∈ H2 | (x − x0)

2 + y2 = R2} for some R > 0). Choose a
parametrization γ of C. Show that γ can be reparametrized as a geodesic.

(b) Same as part (a), but for the vertical ray C = {(x0, y) | y > 0}.

Remark. It is easy to see that given a point p in the upper half-plane, and a
non-vertical straight line ` through (x1, y1), there exists a unique circle centered on
the x-axis that is tangent to ` at p. It follows that the image of every geodesic in
(H2, ghyp) has image lying in one of the semicircles or vertical rays considered above.

2


