
Differential Geometry II—MTG 6257—Spring 2013
Problem Set 4

1. Recall the “polar decomposition” of an invertible matrix from undergraduate
linear algebra: any invertible matrix A can be written as a product RS, where R is
an orthogonal matrix and S is a symmetric positive-definite matrix. If we choose S
to be the unique positive-definite square root of AtA, which we henceforth do, then
S depends continuously on A (you are allowed to assume this), and hence so does R.

Use the polar decomposition to show any one of the following (you do not have
to show more than one):

1. There is a strong deformation retraction from SL(2,R) to SO(2). (A strong
deformation retraction from a topological space A to a subspace B is a con-
tinuous map A → B that is homotopic to idA through maps that restrict to
the identity on B. Choose this option only if you are already familiar with the
terminology.)

2. SL(2,R) is homeomorphic to S1×R2. (Note: do not confuse homeomorphism
with homomorphism. The product group S1×R2 is not isomorphic to SL(2,R).)

3. SL(2,R) is diffeomorphic to S1 ×R2.

Note: the third assertion obviously implies the second assertion, which implies the
first. The first is the easiest to show, if you are familiar with the terminology. For
some approaches to the second assertion, “diffeomorphic” will be no harder to show
than “homeomorphic”. But if your approach just shows that the two manifolds are
homeomorphic, that is sufficient for this problem.

2. Recall that the Lie algebra of SL(2,R) is sl(2,R) =

{(
a b
c −a

)
| a, b, c ∈ R

}
.

(a) Show that if X =

(
a b
c −a

)
, then X2 = ∆I, where ∆ = a2 + bc = − det(X).

(b) Use part (a) to compute explicit formulas for exp(X) in the cases ∆ > 0,
∆ = 0, ∆ < 0, where the notation is as in part (a). To help you check that you’re on
the right track: for ∆ > 0, you should find that

exp(X) = (cosh
√

∆)I +
sinh
√

∆√
∆

X. (1)

(c) From your explicit formulas in (b), show that for all X ∈ sl(2,R),
tr(exp(X)) ≥ −2.
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(d) Find A ∈ SL(2,R) with tr(A) < −2, and hence show that SL(2,R) is a
connected Lie group for which the exponential map is not surjective. (Connectedness
follows from problem 1.)

3. Another Lie group for which it is easy to compute the exponential map explicitly is
SO(3). Using the same general procedure as in problem 2ab, compute exp : so(3)→
SO(3) (you will not need as many cases as for SL(2,R)). From your explicit formula,
deduce that all one-parameter subgroups (t 7→ exp(tX)) in SO(3) are periodic.

Remark: The fact that exp is easy to compute for SL(2,R) and SO(3) is a
feature of low-dimensionality. But the reason that the computations for these two
particular groups are so similar to each other, and not just easy, is deeper: the
Lie algebras sl(2,R) and so(3) ∼= su(2) are real forms of the same complex Lie
algebra, sl(2,C). (A real Lie algebra g can be complexified to a complex Lie algebra
gC = {X + iY | X, Y ∈ g}, where the bracket on gC is defined the “obvious” way,
using the distributive law and treating i2 as −1. We call g a real form of a complex
Lie algebra g′ if gC is isomorphic, as a complex Lie algebra, to g′.)

4. Let G = {
(
x y
0 z

)
| x, z > 0} ⊂ GL(2,R) (the sign-restriction on x and z is just

to make G connected, so that this problem can be seen as a companion to problem
5 below). Writing the general element of G as above, we may view x, y, and z as
functions G→ R. With this understanding, define three-forms µL, µR on G by

µL =
dx ∧ dy ∧ dz

x2z
,

µR =
dx ∧ dy ∧ dz

xz2
.

Show that µL is left-invariant and that µR is right-invariant. Use this to deduce that
G does not admit a bi-invariant volume form.

Some hints: (i) When showing that, say, L∗gµL = µL, do not use the letters
x, y, z for the entries of g; otherwise the “x” in g will mean something different
from the “x” in dx (etc. for y, z). Instead, take g to be a fixed but arbitrary

element

(
α β
0 γ

)
of G. (ii) From general facts about pullbacks, L∗g

dx∧dy∧dz
x2z

=

L∗
gdx∧L∗

gdy∧L∗
gdz

(L∗
gx)

2L∗
gz

=
d(L∗

gx)∧d(L∗
gy)∧d(L∗

gz)

(L∗
gx)

2L∗
gz

.

5. Define functions x, y, z, w : SL(2,R) → R by writing the general element of

SL(2,R) as g =

(
x y
z w

)
. These four functions are not independent of each other;

they satisfy the equation xw − yz = 1 identically.
Define U1 = {g ∈ SL(2,R) | x(g) 6= 0}, and analogously define U2, U3, U4 (with

y 6= 0 on U2, z 6= 0 on U3, and w 6= 0 on U4). These four open sets cover SL(2,R).
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Define a 3-form on each of these sets as follows:

µ1 =
dx ∧ dy ∧ dz

x
on U1 ,

µ2 =
dx ∧ dy ∧ dw

y
on U2 ,

µ3 = −dx ∧ dz ∧ dw
z

on U3 ,

µ4 = −dy ∧ dz ∧ dw
w

on U4 .

(a) Show that µi = µj on Ui

⋂
Uj, 1 ≤ i < j ≤ 4. Note: You can do this with

three computations (the cases with i = 1) rather than six, by using the fact that
each µi is continuous on its domain, and that U1

⋂
Ui

⋂
Uj is dense in Ui

⋂
Uj for

2 ≤ i < j ≤ 4.

(b) In view of part (a), we can define a volume form µ on SL(2,R) by setting
µ = µi on Ui. Show that µ is bi-invariant.

Suggestions: (i) Use the hints from problem 4, with appropriate changes. (ii) Show
that L∗gµ1 = µ1 on U1

⋂
L−1g (U1). Then, instead of doing 15 more computations of

the same type to show L∗gµi = µj on Uj

⋂
L−1g (Ui) for all i, j, or just asserting that

“the other cases are similar” without actually checking, use a continuity argument
based on denseness of the Ui (applied both to the domains of the µi and to g) to show
that this one computation implies that L∗gµ = µ globally, for all g ∈ SL(2,R).
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