\mathcal{F}-linearity, tensoriality, and related notions

- Throughout, M is an arbitrary manifold and $n:=\operatorname{dim}(M)$.
- For any vector bundle E over M :

1. $\pi_{E}: E \rightarrow M$ denotes the projection map.
2. For each $p \in M, E_{p}:=\pi_{E}^{-1}(p)$, the fiber of E over p.
3. We use the terminology set-theoretic section of E for any map $s: M \rightarrow E$, not necessarily smooth (or even continuous), such that $\pi_{E} \circ s=\mathrm{id}_{M}$. We reserve the terminology section of E for a smooth set-theoretic section.
4. $\Gamma(E)$ denotes the space of sections of E.
5. For $s \in \Gamma(E)$, the value of s at p may be denoted $s(p), s_{p}$, or $\left.s\right|_{p}$.
6. For $U \subset M$ open and $s \in \Gamma\left(\left.E\right|_{U}\right)$, the extension of s by 0 to M is the set-theoretic section $\tilde{s}: M \rightarrow E$ such that

$$
\tilde{s}(p)= \begin{cases}s(p) & \text { if } p \in U, \\ 0 & \text { if } p \notin U .\end{cases}
$$

7. Let $p \in M, v \in E_{p}$, and $s \in \Gamma(E)$. We say that s is an extension of v, or that s extends v, if $s(p)=v$.
8. If $\kappa=\operatorname{rank}(E)>0$, then for $U \subset M$ open, a basis of sections of E over U, or basis of sections of $\left.E\right|_{U}$, will mean an ordered κ-tuple $\left\{s_{\mu} \in \Gamma\left(\left.E\right|_{U}\right)\right\}_{\mu=1}^{\kappa}$ such that for all $p \in U,\left\{s_{\mu}(p)\right\}$ is a basis of E_{p}. (This is an abuse of terminology, but is convenient.)

- We write $\mathcal{F}=\mathcal{F}(M)=C^{\infty}(M)$ (the algebra of smooth functions $M \rightarrow \mathbf{R}$). For any vector bundle E over M, there is a natural action of \mathcal{F} on $\Gamma(E)$: for $s \in \Gamma(E)$ and $f \in \mathcal{F}$, we define $f s \in \Gamma(E)$ by $(f s)(p)=f(p) s(p)$ (it is easily seen that the set-theoretic section $f s$ is smooth). Thus the vector space $\Gamma(E)$ is canonically an \mathcal{F}-module.

$1 \mathcal{F}$-linearity and tensoriality

In this section of these notes, E and F denote fixed, arbitrary vector bundles over M.

Definition 1.1 Let $L: \Gamma(E) \rightarrow \Gamma(F)$ be a map.

1. We say that L is \mathcal{F}-linear if $L\left(s_{1}+s_{2}\right)=L\left(s_{1}\right)+L\left(s_{2}\right)$ and $L(f s)=f L(s)$ for all $s_{1}, s_{2}, s \in \Gamma(E)$ and all $f \in \mathcal{F}$. (Thus every \mathcal{F}-linear map is linear.) Equivalent definitions are:

- L is \mathcal{F}-linear if L is linear and $L(f s)=f L(s)$ for all $s \in \Gamma(E)$ and all $f \in \mathcal{F}$.
- An \mathcal{F}-linear map $\Gamma(E) \rightarrow \Gamma(F)$ is a homomorphism of \mathcal{F}-modules.

2. We say that L is tensorial if there exists a bundle homomorphism $H: E \rightarrow F$, covering the identity map id_{M}, such that for all $s \in \Gamma(E)$,

$$
\begin{equation*}
L(s)=H \circ s \tag{1}
\end{equation*}
$$

3. For $s \in \Gamma(E)$ and $p \in M$, we say that $\left.L(s)\right|_{p}$ depends only of value of s at p if for all $s_{1} \in \Gamma(E)$ with $s_{1}(p)=s(p)$, we have $\left.L(s)\right|_{p}=\left.L\left(s_{1}\right)\right|_{p}$. In these notes, we will say that L is determined by 0 -jets if for all $s \in \Gamma(E)$ and $p \in M,\left.L(s)\right|_{p}$ depends only of value of s at $p .{ }^{1}$

Observe that there is a natural one-to-one correspondence

$$
\begin{align*}
\{\text { bundle homomorphisms } E \rightarrow F\} & \longleftrightarrow \Gamma(\operatorname{Hom}(E, F)), \tag{2}\\
H & \longleftrightarrow \hat{H} \tag{3}
\end{align*}
$$

Specifically, given a homomorphism $H: E \rightarrow F$ and $p \in M$, the map $\left.H\right|_{E_{p}}$ is a linear map $\hat{H}_{p}: E_{p} \rightarrow F_{p}$, i.e. an element of the fiber $\operatorname{Hom}(E, F)_{p}$. Smoothness of H implies smoothness of \hat{H} (proof left to reader). Thus the map $p \mapsto \hat{H}_{p}$ is a section of $\operatorname{Hom}(E, F)$. Conversely, given $\hat{H} \in \Gamma(\operatorname{Hom}(E, F))$, we can define a map $H: E \rightarrow F$ by $H(v)=\hat{H}_{\pi_{E}(v)}(v)$ for all $v \in E$. By definition, \hat{H}_{p} is a (linear) map $E_{p} \rightarrow F_{p}$ for all p, so $\pi_{F}(H(v))=\pi_{E}(v)$. Smoothness of \hat{H} implies smoothness of H (proof left to reader). Thus H is a smooth bundle map $E \rightarrow F$ covering the identity, and linear on fibers. By definition, H is therefore a bundle homomorphism.

For the remainder of these notes, we use the notation (3) for the correspondence (2).

[^0]Since we have a canonical isomorphism $\operatorname{Hom}(E, F) \rightarrow F \otimes E^{*}$, the section \hat{H} above is canonically identified with a section of $F \otimes E^{*}$. If (1) is satisfied, then the action of L on a section s is achieved by pointwise tensor-algebra operations:

$$
\begin{array}{ccccc}
\operatorname{Hom}(E, F)_{p} \times E_{p} & \rightarrow & F_{p} \otimes E_{p}^{*} \otimes E_{p} & \rightarrow & F_{p} \\
\left(\hat{H}_{p}, s_{p}\right) & \mapsto & \hat{H}_{p} \otimes s_{p} & \mapsto & \left.\mapsto \hat{H}_{p}, s_{p}\right\rangle,
\end{array}
$$

where the last map is contraction on the last two factors of $F_{p} \otimes E_{p}^{*} \otimes E_{p}$ (induced by the trilinear map $\left.F_{p} \times E_{p}^{*} \times E_{p} \rightarrow F_{p},(w, \alpha, v) \mapsto w\langle\alpha, v\rangle\right)$. This is why we call L tensorial if (1) is satisfied.

We will show that for a linear map $\Gamma(E) \rightarrow \Gamma(F)$, the notions of \mathcal{F}-linearity, tensoriality, and having the property of being determined by 0 -jets, are equivalent. We start with some lemmas we will need.

Lemma 1.2 Let $p \in M$. There exists a chart (U, ϕ) of M such that $\left.E\right|_{U}$ is trivial.
Proof: Let $\left(U_{1}, \phi\right)$ be a chart of M with $p \in U_{1}$. Let V be an open neighborhood of p such that $\left.E\right|_{V}$ is trivial. Let $U=U_{1} \cap V, \phi=\left.\phi_{1}\right|_{U}$. Then (U, ϕ) is a chart with the desired property.

Lemma 1.3 Let $p \in M$, Let (U, ϕ) be a chart of M such that $\left.E\right|_{U}$ is trivial, let $B \subset \mathbf{R}^{n}$ be an open ball with $\bar{B} \subset \phi(U)$, and let $V=\phi^{-1}(B)$. Suppose $s \in \Gamma(E)$ is a section supported in \bar{V} (i.e. identically zero on the complement). Assume that $\kappa:=\operatorname{rank}(E)>0$. Then there exist a κ-tuple $\left\{t_{\mu} \in \Gamma(E)\right\}_{\mu=1}^{\kappa}$ and a κ-tuple $\left\{h^{\mu} \in C^{\infty}(M)\right\}_{\mu=1}^{\kappa}$ such that (i) $\left\{\left.t_{\mu}\right|_{V}\right\}_{1}^{\kappa}$ is a basis of sections of $\left.E\right|_{V}$, and (ii) $s=\sum_{\mu} h^{\mu} t_{\mu}$.

The point of this lemma is to show that any $s \in \Gamma(E)$ can be expressed globally as a "linear" combination, with coefficients in \mathcal{F}, of global sections of E that restrict to a basis of sections of $\left.E\right|_{V}$.
Proof of Lemma 1.3: Let $\left\{s_{\mu}\right\}_{\mu=1}^{\kappa}$ be a basis of sections of $\left.E\right|_{U}$. Let $\rho: M \rightarrow \mathbf{R}$ be a smooth function such that $\rho \equiv 1$ on V and $\rho \equiv 0$ on $M \backslash U$.

Since $\left\{s_{\mu}\right\}$ is a basis of sections of $\left.E\right|_{U}$, there exist unique smooth functions $f^{\mu}: U \rightarrow \mathbf{R}$ such that $\left.s\right|_{U}=\sum_{\mu=1}^{\kappa} f^{\mu} s_{\mu}$. Since $\operatorname{supp}(s) \subset \bar{V} \subset U$, and the s_{μ} are linearly independent at each point, we have $\operatorname{supp}\left(f^{\mu}\right) \subset \bar{V}$ for each μ. For each μ the function $\left.\rho\right|_{U} f^{\mu}$ is smooth and supported in $\bar{V} \subset U$, hence extends smoothly by 0 to a function $h^{\mu}: M \rightarrow \mathbf{R}$ (still supported in \bar{V}). Similarly, the section $\left.\rho\right|_{U} s_{\mu}$ is smooth and supported in U, hence extends smoothly by 0 to a section t_{μ} of E, supported in U.

Let $\tilde{s}=\sum_{\mu=1}^{\kappa} h^{\mu} t_{\mu}$. Then for $p \in M \backslash V$, we have $\tilde{s}(p)=0=s(p)$, since s and the h^{μ} are supported in \bar{V}. For $p \in V$, we have $\rho(p)=1$, implying $h^{\mu}(p)=f^{\mu}(p)$ and $t_{\mu}(p)=s_{\mu}(p)$, hence implying $\tilde{s}(p)=s(p)$.

Therefore, we have the global equalities $s=\tilde{s}=\sum h^{\mu} t_{\mu}$.

Lemma 1.4 Let $L: \Gamma(E) \rightarrow \Gamma(F)$ be \mathcal{F}-linear. Let $p \in M, s \in \Gamma(E)$, and assume that $s(p)=0$. Then $\left.L(s)\right|_{p}=0$.

Proof: It suffices to assume that $\kappa:=\operatorname{rank}(E)>0$. Let (U, ϕ) be a chart of M such that $\left.E\right|_{U}$ is trivial and $p \in U$. Let $B=B_{r}(\phi(p)) \subset \mathbf{R}^{n}$ be the open ball of radius r centered at $\phi(p) \in B$, with r small enough that and $\bar{B} \subset \phi(U)$. Let $B_{1}=B_{r / 2}(\phi(p))$, $V=\phi^{-1}(B)$, and $V_{1}=\phi^{-1}\left(B_{1}\right)$. Let $\rho: M \rightarrow \mathbf{R}$ be a smooth function such that $\rho \equiv 1$ on V_{1} and $\rho \equiv 0$ on $M \backslash V$. Let $s_{1}=\rho s$ and $s_{2}=(1-\rho) s$; thus $s=s_{1}+s_{2}$.

Since $\operatorname{supp}\left(s_{1}\right) \subset V$, Lemma 1.3 implies that we can write $s_{1}=\sum_{\mu=1}^{\kappa} h^{\mu} t_{\mu}$ for some functions $h^{\mu} \in C^{\infty}(M)$ and some sections $t_{\mu} \in \Gamma(E)$ such that $\left\{t_{\mu}\right\}_{1}^{\kappa}$ is a basis of sections of $\left.E\right|_{V}$. Observe that $s_{1}(p)=0$. Since $\left\{t_{\mu}(p)\right\}$ is a basis of E_{p}, it follows that $h^{\mu}(p)=0$ for each μ. The \mathcal{F}-linearity of L implies that $L\left(s_{1}\right)=\sum h^{\mu} L\left(t_{\mu}\right)$. Hence for all $p \in M, L\left(s_{1}\right)_{p}=\left.\sum h^{\mu}(p) L\left(t_{\mu}\right)\right|_{p}=0$.

Again using \mathcal{F}-linearity, $\left.L\left(s_{2}\right)\right|_{p}=\left.(1-\rho(p)) L(s)\right|_{p}=0$, since $\rho(p)=1$. Hence $\left.L(s)\right|_{p}=\left.L\left(s_{1}\right)\right|_{p}+\left.L\left(s_{2}\right)\right|_{p}=0$.

Corollary 1.5 Let $L: \Gamma(E) \rightarrow \Gamma(F)$ be \mathcal{F}-linear. Then L is determined by 0 -jets.
Proof: Let $p \in M$, let $s_{1}, s_{2} \in \Gamma(E)$, and assume that $s_{1}(p)=s_{2}(p)$. Let $s=s_{2}-s_{1}$. Then $s(p)=0$, so by Lemma 1.4, $\left.L(s)\right|_{p}=0$. Hence $\left.L\left(s_{2}\right)\right|_{p}=\left.L\left(s+s_{1}\right)\right|_{p}=\left.L\left(s_{1}\right)\right|_{p}$.

Lemma 1.6 (Extendability of sections defined at a point) Let $p \in M, v \in$ E_{p}. There exists $s \in \Gamma(E)$ that extends v.

Proof: Let V be an open neighborhood of p such that $\left.E\right|_{V}$ is trivial, and let $\left\{s_{\mu}\right\}_{1}^{\kappa}$ be a basis of sections of $\left.E\right|_{V}$. Let $\left\{c^{\mu} \in \mathbf{R}\right\}_{\mu=1}^{\kappa}$ be such that $v=\sum c^{\mu} s_{\mu}(p)$.

Let $\rho: M \rightarrow \mathbf{R}$ be a smooth function such that $\rho(p)=1$ and $\operatorname{supp}(\rho) \subset V$. Define $s^{\prime} \in \Gamma\left(\left.E\right|_{V}\right)$ by $s^{\prime}=\rho \sum c^{\mu} s_{\mu}$; thus $s^{\prime}(p)=v$. Let s be the extension of s^{\prime} by 0 to M. Then s is smooth, hence a section of E, and $s(p)=v$.

Corollary 1.7 If $L: \Gamma(E) \rightarrow \Gamma(F)$ is tensorial, then the bundle homomorphism H in (1) is unique.

Proof: Let H_{1}, H_{2} be bundle homorphisms $E \rightarrow F$ satisfying (1). Let $H^{\prime}=H_{2}-H_{1}$ (defined pointwise). Then $\left(H_{2}-H_{1}\right)(s(p))=0$ for all $p \in M, s \in \Gamma(E)$. Since for all $v \in E$, there exists a section $s \in \Gamma(E)$ extending v, it follows that $\left(H_{2}-H_{1}\right)(v)=0$ for all $v \in E$. Hence $H_{2}=H_{1}$.

Proposition 1.8 Let $L: \Gamma(E) \rightarrow \Gamma(F)$ be a linear map. Then the following are equivalent:
(i) L is \mathcal{F}-linear.
(ii) L is determined by 0 -jets.
(iii) L is tensorial.

Proof: We show "(iii) \Rightarrow (i) \Rightarrow (ii) \Rightarrow (iii)."
(iii) \Rightarrow (i): This follows immediately from (1) and the definition of "bundle homomorphism covering the identity".
(i) \Rightarrow (ii): This is Corollary 1.5.
(ii) \Rightarrow (iii): Assume that L is determined by 0 -jets. For $p \in M$ and $v \in E_{p}$, define $\hat{H}_{p}(v) \in F_{p}$ by

$$
\begin{equation*}
\hat{H}_{p}(v):=\left.L(s)\right|_{p} \tag{4}
\end{equation*}
$$

where s is any extension of v to a section of E (such an extension exists by Lemma 1.6). Since L is determined by 0 -jets, $\hat{H}_{p}(v)$ is well-defined; all extensions s of v yield the same value of $\left.L(s)\right|_{p}$. Letting v vary over E_{p}, (4) therefore defines a map $\hat{H}_{p}: E_{p} \rightarrow F_{p}$.

If s_{1}, s_{2} are extensions of $v_{1}, v_{2} \in E_{p}$ to sections of E, and $c_{1}, c_{2} \in \mathbf{R}$, then then $c_{1} s_{1}+c_{2} s_{2}$ is an extension of $c_{1} v_{1}+c_{2} v_{2}$ to a section of E. The linearity of L therefore implies that, for each p, the map $\hat{H}_{p}: E_{p} \rightarrow F_{p}$ is linear. Hence, letting p vary, we obtain a set-theoretic section \hat{H} of $\operatorname{Hom}(E, F)$.

We next show that \hat{H} is smooth. Let $p \in M$, let U be a neighborhood of p such that $\left.E\right|_{U}$ and $\left.F\right|_{U}$ are trivial, and let $\left\{s_{\mu}\right\}_{\mu=1}^{\kappa_{1}},\left\{\sigma_{\nu}\right\}_{\nu=1}^{\kappa_{2}}$, be bases of sections of $\left.E\right|_{U},\left.F\right|_{U}$ respectively. Let $\left\{\xi^{\nu}\right\}_{\nu=1}^{\kappa_{2}}$ be the basis of sections of $\left.F^{*}\right|_{U}$ that is dual (pointwise) to $\left\{\sigma_{\nu}\right\}_{\nu=1}^{\kappa_{2}}$. Let $A: U \rightarrow\left\{\kappa_{2} \times \kappa_{1}\right.$ matrices $\}$ be the function defined pointwise by expanding the elements $\hat{H}_{q}\left(s_{\mu}(q)\right) \in F_{q}$ in terms of the basis $\left\{\sigma_{\nu}(q)\right\}$ of F_{q} :

$$
\hat{H}_{q}\left(s_{\mu}(q)\right)=\sum_{\nu=1}^{\kappa_{2}} \sigma_{\nu}(q) A^{\nu}{ }_{\mu}(q), \quad q \in U, \quad 1 \leq \mu \leq \kappa_{1} .
$$

Alternatively, $A^{\nu}{ }_{\mu}(q)=\left\langle\left.\xi^{\nu}\right|_{q}, \hat{H}\left(s_{\mu}(q)\right)\right\rangle$. To show that \hat{H} is smooth at p, it suffices to show that the each coefficient-function $A^{\nu}{ }_{\mu}$ is smooth at p.

Let $\rho: M \rightarrow \mathbf{R}$ be a smooth function such that $\rho \equiv 1$ on some open neighborhood V of p and $\rho \equiv 0$ on $M \backslash U$. The sections $\left.\rho\right|_{U} s_{\mu}$ of $\left.E\right|_{U}$ extend smoothly by 0 to sections t_{μ} of E, and we have $t_{\mu}(q)=s_{\mu}(q)$ for all $q \in V$. Hence for $q \in V$,

$$
\begin{equation*}
A^{\nu}{ }_{\mu}(q)=\left\langle\left.\xi^{\nu}\right|_{q}, \hat{H}\left(s_{\mu}(q)\right)\right\rangle=\left\langle\left.\xi^{\nu}\right|_{q}, \hat{H}\left(t_{\mu}(q)\right)\right\rangle=\left\langle\left.\xi^{\nu}\right|_{q},\left.L\left(t_{\mu}\right)\right|_{q}\right\rangle \tag{5}
\end{equation*}
$$

Since $t_{\mu} \in \Gamma(E), L\left(t_{\mu}\right)$ is a (smooth) section of F. Hence both ξ^{ν} and $L\left(t_{\mu}\right)$ are smooth on V, so (5) implies that the functions $A^{\nu}{ }_{\mu}$ are smooth on V. In particular, they are smooth at p.

Thus \hat{H} is smooth at p. Since p was arbitrary, $\hat{H} \in \Gamma(E)$. Using the correspondence (2)-(3), we obtain a bundle homomorphism $H: E \rightarrow F$ such that (1) holds. Hence L is tensorial.

Notation 1.9 For vector bundles E, F over M, let $\operatorname{Hom}_{\mathcal{F}}(\Gamma(E), \Gamma(F))$ denote the set of \mathcal{F}-linear maps $\Gamma(E) \rightarrow \Gamma(F)$.

Remark 1.10 For $L \in \operatorname{Hom}_{\mathcal{F}}(\Gamma(E), \Gamma(F))$ let us write H_{L} for the unique bundle homomorphism for which $L(s)=H_{L} \circ s$ (uniqueness being guaranteed by Corollary 1.7). Then, using (2)-(3), we obtain a natural map

$$
\begin{align*}
j_{F}^{E}: \operatorname{Hom}_{\mathcal{F}}(\Gamma(E), \Gamma(F)) & \rightarrow \Gamma(\operatorname{Hom}(E, F)), \tag{6}\\
L & \mapsto \hat{H}_{L}
\end{align*}
$$

Observe that $\operatorname{Hom}_{\mathcal{F}}(\Gamma(E), \Gamma(F))$ is a vector space - a subspace of $\operatorname{Hom}(\Gamma(E), \Gamma(F))$ -and, by Proposition (1.8), is the same as the space of tensorial maps $\Gamma(E) \rightarrow \Gamma(F)$. Furthermore, the space $\operatorname{Hom}_{\mathcal{F}}(\Gamma(E), \Gamma(F))$ is itself an \mathcal{F}-module, and it is easily seen that j_{F}^{E} is an \mathcal{F}-module isomorphism.
Remark 1.11 A map $L: \Gamma(E) \rightarrow \Gamma(F)$ is called local if, for all $p \in M$ and $s \in \Gamma(E)$, the value of $\left.L(s)\right|_{p}$ depends only on the germ of s at p. (If L is linear, then L is local if and only if for every open set $U \subset M$ and every $s \in \Gamma(E)$ such that $\left.s\right|_{U} \equiv 0$, we have $\left.L(s)\right|_{V} \equiv 0$.) Obviously, if L depends only on 0 -jets, then L is local, but the converse is very far from true. Contained in the set of all local maps ${ }^{2} \Gamma(E) \rightarrow \Gamma(F)$ is the set of all differential operators $\Gamma(E) \rightarrow \Gamma(F)$. A differential operator $\Gamma(E) \rightarrow \Gamma(F)$ of order 0 is simply a map that is determined by 0 -jets. In these notes we do not define what "differential operator $\Gamma(E) \rightarrow \Gamma(F)$ " means in general, but a true fact is that for each integer $r \geq 0$ there is a notion of differential operator of order r. As one might expect from the name "differential operator", and the local nature of anything that we generally call "differentiation", any differential operator of any order is local.

$2 \mathcal{F}$-multilinearity and tensoriality

For any vector spaces V, W, finite- or infinite-dimensional, we write $\operatorname{Hom}(V, W)$ for the space of all linear maps $V \rightarrow W$. In this notation, we do not care if the vector spaces are topologized, let alone whether our linear maps are continuous.

[^1]Definition 2.1 Let $E_{1}, E_{2}, \ldots, E_{r}, F$ be vector bundles over M, and let $L: \Gamma\left(E_{1}\right) \times \Gamma\left(E_{2}\right) \times \cdots \times \Gamma\left(E_{r}\right) \rightarrow \Gamma(F)$ be a map.

1. We say that L is \mathcal{F}-multilinear if for $1 \leq i \leq r, L$ is \mathcal{F}-linear as a function of its $i^{\text {th }}$ argument with the other arguments held fixed.
2. We say that L is tensorial if there exists a bundle homomorphism $H: E_{1} \otimes E_{2} \ldots \otimes E_{r} \rightarrow F$, covering the identity, such that for all $s_{i} \in \Gamma\left(E_{i}\right)$, $1 \leq i \leq r$,

$$
\begin{equation*}
L\left(s_{1}, s_{2}, \ldots, s_{r}\right)=H \circ\left(s_{1} \otimes s_{2} \ldots \otimes s_{r}\right) . \tag{7}
\end{equation*}
$$

Here $s_{1} \otimes s_{2} \ldots \otimes s_{r}$ is the section of $E_{1} \otimes E_{2} \ldots \otimes E_{r}$ defined by pointwise tensor-product:

$$
\begin{aligned}
\left.\left(s_{1} \otimes s_{2} \ldots \otimes s_{r}\right)\right|_{p}=s_{1}(p) \otimes s_{2}(p) \ldots \otimes s_{r}(p) & \left.\left.\left.\in \quad E_{1}\right|_{p} \otimes E_{2}\right|_{p} \ldots \otimes E_{r}\right|_{p} \\
& \xlongequal[\text { canon. }]{ }\left(E_{1} \otimes E_{2} \ldots \otimes E_{r}\right)_{p} .
\end{aligned}
$$

3. For $s_{i} \in \Gamma\left(E_{i}\right), 1 \leq i \leq r$, and $p \in M$, we say that $\left.L\left(s_{1}, \ldots, s_{r}\right)\right|_{p}$ depends only of values of s_{1}, \ldots, s_{r} at p if for all $s_{i}^{\prime} \in \Gamma\left(E_{i}\right)$ with $s_{i}^{\prime}(p)=s_{i}(p), 1 \leq i \leq r$, we have $\left.L\left(s_{1}^{\prime}, \ldots, s_{r}^{\prime}\right)\right|_{p}=\left.L\left(s_{1}, \ldots, s_{r}\right)\right|_{p}$. In these notes, we will say that L is determined by 0 -jets if for all $s_{i} \in \Gamma\left(E_{i}\right), 1 \leq i \leq r$, and $p \in M$, the value $\left.L\left(s_{1}, \ldots, s_{r}\right)\right|_{p}$ depends only of values of s_{1}, \ldots, s_{r} at p.

Note that from (2)-(3), we have a natural one-to-one correspondence

$$
\begin{align*}
& \text { \{bundle homomorphisms } \left.E_{1} \otimes E_{2} \otimes \ldots \otimes E_{r} \rightarrow F\right\} \\
& \qquad \longleftrightarrow \Gamma\left(\operatorname{Hom}\left(E_{1} \otimes E_{2} \otimes \ldots \otimes E_{r}, F\right)\right), \tag{8}
\end{align*}
$$

which we will again denote by $H \longleftrightarrow \hat{H}$.
For any vector spaces V, W, Z, let $\operatorname{Bihom}(V \times W, Z)$ denote set of bilinear maps $V \times W \rightarrow Z$. This set is a vector subspace of $\operatorname{Maps}(V \times W, Z)$, the set of all functions $V \times W \rightarrow Z$.

Recall that for any nonempty sets X, Y, Z, the natural map

$$
\begin{aligned}
\operatorname{Maps}(X \times Y, Z) & \xrightarrow{\natural} \operatorname{Maps}(X, \operatorname{Maps}(Y, Z)), \\
f & \mapsto f_{\natural}: x \mapsto\{y \mapsto f(x, y)\}
\end{aligned}
$$

is a one-to-one correspondence. For vector spaces V, W, Z one can easily verify that \square restricts to an isomorphism

$$
\natural_{\mathbf{R}}: \operatorname{Bihom}(V \times W, Z) \rightarrow \operatorname{Hom}(V, \operatorname{Hom}(W, Z))
$$

Proposition 2.2 Let E_{1}, E_{2}, F be vector bundles over M and let $L: \Gamma\left(E_{1}\right) \times \Gamma\left(E_{2}\right) \rightarrow$ $\Gamma(F)$ be a bilinear map. Then the following are equivalent:
(i) L is \mathcal{F}-bilinear.
(ii) L is determined by 0-jets.
(iii) L is tensorial.

Proof: We show "(iii) \Rightarrow (i) \Rightarrow (ii) \Rightarrow (iii)."
(iii) \Rightarrow (i): This follows immediately from (7).
(i) \Rightarrow (ii): Assume L is \mathcal{F}-bilinear. Then for fixed $s_{1} \in \Gamma\left(E_{1}\right)$, the map $\Gamma\left(E_{2}\right) \rightarrow$ $\Gamma(\mathcal{F}), s_{2} \mapsto L\left(s_{1}, s_{2}\right)$, is \mathcal{F}-linear. Hence by Corollary 1.5, holding s_{1} fixed, for $p \in M$ the value $\left.L\left(s_{1}, s_{2}\right)\right|_{p}$ depends only on the value of s_{2} at p. Similarly, with s_{2} held fixed, the value $\left.L\left(s_{1}, s_{2}\right)\right|_{p}$ depends only on the value of s_{1} at p. Hence given $p \in M$, and sections s_{1}, s_{1}^{\prime} of $E_{1}, s_{2}, s_{2}^{\prime}$ of E_{2}, such that $s_{i}(p)=s_{i}^{\prime}(p)$ for $i=1,2$, we have $\left.L\left(s_{1}^{\prime}, s_{2}^{\prime}\right)\right|_{p}=\left.L\left(s_{1}^{\prime}, s_{2}\right)\right|_{p}=\left.L\left(s_{1}, s_{2}\right)\right|_{p}$. Hence $\left.L\left(s_{1}, s_{2}\right)\right|_{p}$ depends only on the values of s_{1} and s_{2} at p. Thus L is determined by 0 -jets.
(ii) \Rightarrow (iii): Assume that L is determined by 0 -jets. Let $L^{\prime}=\natural_{\mathbf{R}}(L) \in$ $\operatorname{Hom}\left(\Gamma\left(E_{1}\right), \operatorname{Hom}\left(\Gamma\left(E_{2}\right), \Gamma(F)\right)\right)$. Fix $s_{1} \in \Gamma\left(E_{1}\right)$. Then $L^{\prime}\left(s_{1}\right) \in \operatorname{Hom}\left(\Gamma\left(E_{2}\right), \Gamma(F)\right)$ depends only on 0 -jets. Hence, by Proposition 1.8, $L^{\prime}\left(s_{1}\right)$ is \mathcal{F}-linear and tensorial, so there exists $\widehat{H}^{\left(s_{1}\right)} \in \Gamma\left(\operatorname{Hom}\left(E_{2}, F\right)\right)$ such that for all $p \in M,\left.L\left(s_{1}, s_{2}\right)\right|_{p}=$ $\left.\left(L^{\prime}\left(s_{1}\right)\right)\left(s_{2}\right)\right|_{p}=\left.\widehat{H}^{\left(s_{1}\right)}\right|_{p}\left(s_{2}(p)\right)$.

Letting s_{1} vary, we now have a map $L^{\prime \prime}: \Gamma\left(E_{1}\right) \rightarrow \Gamma\left(\operatorname{Hom}\left(E_{2}, F\right)\right), s_{1} \mapsto \widehat{H}^{\left(s_{1}\right)}$. Since L is linear, so is $L^{\prime \prime}$, and since L is determined by 0 -jets, so is $L^{\prime \prime}$. Hence, using Proposition 1.8, again $L^{\prime \prime}$ is tensorial, so there exists $\widehat{H} \in$ $\Gamma\left(\operatorname{Hom}\left(E_{1}, \operatorname{Hom}\left(E_{2}, F\right)\right)\right)$ such that for all $p \in M,\left.L\left(s_{1}, s_{2}\right)\right|_{p}=\left.\left(L^{\prime}\left(s_{1}\right)\right)\left(s_{2}\right)\right|_{p}=$ $\left(\widehat{H}_{p}\left(s_{1}(p)\right)\right)\left(s_{2}(p)\right)$. But using the canonical isomorphisms

$$
\begin{aligned}
& \operatorname{Hom}\left(E_{1}, \operatorname{Hom}\left(E_{2}, F\right)\right) \quad \underset{\text { canon. }}{\cong} \operatorname{Hom}\left(E_{2}, F\right) \otimes E_{1}^{*} \\
& \text { canon. } F \otimes E_{2}^{*} \otimes E_{1}^{*} \\
& \underset{\text { canon. }}{\cong} F \otimes E_{1}^{*} \otimes E_{2}^{*} \\
& \underset{\text { canon. }}{\cong} \quad F \otimes\left(E_{1} \otimes E_{2}\right)^{*} \\
& \text { cañon. } \operatorname{Hom}\left(E_{1} \otimes E_{2}, F\right) \text {, }
\end{aligned}
$$

we can canonically identify \hat{H} with a section of $\operatorname{Hom}\left(E_{1} \otimes E_{2}, F\right)$. It follows from the correspondence (8) that L is tensorial.

Corollary 2.3 Let $E_{1}, E_{2}, \ldots, E_{r}, F$ be vector bundles over M and let $L: \Gamma\left(E_{1}\right) \times \Gamma\left(E_{2}\right) \times \cdots \times \Gamma\left(E_{r}\right) \rightarrow \Gamma(F)$ be a multilinear map. Then the following are equivalent:
(i) L is \mathcal{F}-multilinear.
(ii) L is determined by 0-jets.
(iii) L is tensorial.

Proof: Proposition 2.2 plus induction (more or less).

[^0]: ${ }^{1}$ "Determined by 0 -jets" is a phrase invented just for these notes, in order to have a name by which to refer to this property in Proposition 1.8. For any integer $r \geq 0$, there is an object called the r-jet of a section of E at a point. We do not define general r-jets in these notes, but the 0 -jet of a section $s \in \Gamma(E)$ at a point p is simply the value $s(p) \in E_{p}$. In a sense that can be made precise, an r-jet of a section s at p captures the " r th -order information" of s at p.

[^1]: ${ }^{2}$ The term "local map" is being used here with the very specific meaning above. Outside this context, the same term could be used to mean something very different, e.g. a map defined just on some open subset of a topological space.

