
Differential Geometry—MTG 6257—Spring 2018
Problem Set 1

Due-date: Wednesday, 2/7/18

Required problems (to be handed in): 2bd, 3a, 5, and 6cef. In doing any
of these problems, you may assume the results of all earlier problems (optional or
required).

Required reading: (1) The first two paragraphs of problem 7, and Remarks 1
and 2 at the end of problem 7. (2) The statements of results (Propositions, Corollaries,
Lemmas, Theorems), and Remark 0.12, in the handout, “Some Sufficient Conditions
for Paracompactness”. The terminology “σ-compact” and “exhaustion” are defined
on p. 1.

Optional reading: The proofs in the paracompactness handout.

Optional problems: All the ones that are not required. If you are interested in
de Rham cohomology, problems 8 and 9 are fundamental. The non-technical parts
are worth reading, even if you don’t do the problems. (The technical parts are just
in problem 8: the set-up and part (a).)

1. Let M be an oriented n-dimensional manifold. Show that the map Ωn
c (M) → R

given by ω 7→
∫
M
ω is linear.

2. Let M,N be manifolds of the same dimension n. If M and N are oriented, then
at each p ∈ M , a local diffeomorphism F : M → N either preserves orientation or
reverses it, accordingly as F∗p carries a positively-oriented basis of TpM to a positively-
or negatively-oriented basis of TF (p)N . We say that F is an orientation-preserving
map if it preserves orientation at each point, and an orientation-reversiing map if
it reverses orientation at each point. For such maps, below we define sgn(F ) = 1
(respectively, −1) if F preserves (respectively, reverses) orientation.

(a) Show that if M is connected, and M and N are oriented, then every local
diffeomorphism is either orientation-preserving or orientation-reversing.

(b) Show that if M is connected F : M → N is a diffeomorphism, then for every
ω ∈ Ωn

c (N), ∫
M

F ∗ω = sgn(F )

∫
N

ω.

(This fact is called invariance of the integral under diffeomorphism.)

(c) Show that if N is oriented, every local diffeomorphism F : M → N canonically
induces an orientation on M , which may be characterized as the unique orientation
on M such that F is orientation-preserving. (Note that this implies that if N is
orientable, then so is M .)
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(d) Suppose that M is compact, N is connected, and F : M → N is a local
diffeomorphism (hence a submersion, for dimensional reasons). From last semester’s
homework, these conditions imply that F is also a covering map. Connectedness of N
implies that the cardinality of the set F−1({p}) is independent of the point p ∈ N (a
basic fact about covering spaces), and compactness of M implies that this cardinality
is finite.

Assume that N is oriented and that M is given the induced orientation as in part
(c). Let deg(F ), the degree of the covering map, denote the cardinality of F−1({p})
for some (hence any) p. Show that for all ω ∈ Ωn(N),∫

M

F ∗ω = deg(F )

∫
N

ω.

3. Extension from a closed submanifold. This problem is another valuable
application of partitions of unity. You should find the arguments for all three parts
very similar to each other.

Let M be a manifold, Z ⊂M a submanifold that is closed as a subset of M .

(a) “Smooth Tietze Extension Theorem”. Suppose f : Z → R is a smooth func-
tion. Show that f can be extended to a smooth function M → R.

Note: This would be false without the hypothesis that Z is closed in M , even
if we were looking just for continuous extensions, and even if we required dim(Z) to
be strictly smaller than dim(M). If your argument doesn’t use the hypothesis that
Z is closed, you’ve made a mistake. The same goes for parts (b) and (c).

(b) A vector field along Z is a section of TM |Z , i.e. a smooth map X : Z → TM ,
p 7→ Xp ∈ TpM . (We do not require Xp to be tangent to Z.) Show that a vector field
along Z can be extended to a vector field on M .

(c) Similarly, for k > 0 a k-form along Z is a map ω : Z →
∧kT ∗M , p 7→ ωp ∈∧kT ∗pM , smooth in the sense that if X1, . . . Xk are smooth vector fields along Z, then

p 7→ ω(X1, . . . , Xk)
∣∣
p

is smooth. Show that a k-form along Z can be extended to a

k-form on M .

4. Let D be a domain with regular boundary in an oriented n-dimensional manifold
M , where n ≥ 1 and let ∂D have the induced orientation. Let ω ∈ Ωp(M), η ∈
Ωq(M), where p+ q = n− 1, and assume that at least one of the sets supp(ω)

⋂
D,

supp(η)
⋂
D, is compact. (Note that the compact-support assumption is superfluous

if we assume that M is compact or that D is compact.) Prove the “integration-by-
parts” formula ∫

D

dω ∧ η =

∫
∂D

ω ∧ η − (−1)p
∫
D

ω ∧ dη.

Remark. The case D = M (hence ∂D = ∅) is important all by itself.
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5. Let M be an n-dimensional oriented manifold. A volume form on M is a positive
n-form. (We showed in class that a volume form always exists.) Show that if M is
compact and ω is a volume form, then ω is not exact.

6. Let M be an n-dimensional manifold, n ≥ 1. The orientation double-cover M̃ is
a covering manifold of M that can be constructed as follows. For each p ∈ M let
Orn(p) denote the set of orientations of TpM , a two-element set. Given σ ∈ Orn(p),

we let −σ denote the other orientation. As a set, let M̃ =
⋃
p∈MOrn(p). There is a

natural two-to-one map π : M̃ →M carrying both elements of Orn(p) to p. We give

M̃ the topology induced by the map π (i.e. a set Ũ ⊂ M̃ is declared to be open if
and only if π(Ũ) is open).

It can be shown that every manifold has as an atlas {(Uα, φα)} for which all
the sets Uα and intersections Uα

⋂
Uβ are connected1; let {(Uα, φα)}α∈A be such an

atlas for M . Then, for each α ∈ A, the set π−1(Uα) has two connected components,
which are distinguished from each other as follows. For p ∈ Uα let σα(p) be the
orientation of TpM pulled back by the map φα : Uα → Rn, where Rn has its standard
orientation. Each p̃ ∈ π−1(Uα) is, by definition, an orientation of Tπ(p)M ; hence
p̃ = ±σα(π(p̃)) (where “+σ” means σ). The sign in this formula is constant on
each connected component of π−1(Uα). We define Ũα,+ to be the component on
which p̃ = σα(π(p̃)), and Ũα,− to be the component on which p̃ = −σα(π(p̃)). We
define corresponding chart-maps φ̃α,± : Ũα,± → Rn as follows. Let r : Rn → Rn

be the reflection (x1, x2, . . . xn) 7→ (−x1, x2, . . . , xn). Then we define φ̃α,+ = φα ◦ π,
φ̃α,− = r ◦ φα ◦ π.

(a) Let Ã = A × {+,−}, an index set for the pairs (Ũα,±, φ̃α,±) constructed

above. Show that {Ũα̃, φ̃α̃}α̃∈Ã is an atlas for M̃ , hence that M̃ is a manifold. (You

may assume that paracompactness and Hausdorffness of M imply that M̃ has these
properties.)

(b) If M is connected, what is the relation between connectedness of M̃ and
orientability of M? (I’m not asking for a proof here; I just want you to state what
the relation is.)

(c) Show that the atlas {Ũα̃, φ̃α̃}α̃∈Ã is oriented. Hence M̃ is orientable; even
better, the construction above gives it a canonical orientation, the one induced by
this atlas. (It can be shown that this orientation is independent of the atlas of M
that we started with, but I’m not asking you to show that.)

(d) Show that π : M̃ → M is a submersion and a smooth, two-to-one covering
map.

(e) Since every point in M̃ is an orientation of a vector space, there is a natural

map τ : M̃ → M̃ defined by τ(σ) = −σ (this map is called an involution, a term you

1It takes some work to show this; just assume it’s true for purposes of this problem.
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may recall from group theory, because τ ◦ τ is the identity map). Show that τ is an
orientation-reversing map.

(f) Since M̃ is oriented, we may integrate any compactly supported n-form over

M̃ . Show that if ω ∈ Ωn(M) is compactly supported, then so is π∗ω, and∫
M̃

π∗ω = 0.

Hint for doing this quickly and elegantly: part (e).

***********

Some notation used below. For any manifold M , point p ∈ M , tangent vector
X ∈ TpM , and ω ∈

∧kT ∗pM (k ≥ 1) we define ιXω ∈
∧k−1T ∗pM by

(ιXω)(Y1, . . . Yk−1) = ω(X, Y1, . . . , Yk−1) ∀Y1, . . . Yk−1 ∈ TpM.

Given any vector field X on M and any ω ∈ Ωk(M), a (k − 1)-form ιXω is defined
by applying the above operation pointwise. For the sake of completeness, if k = 0 we
define ιXω = 0.

***********

7. “Explicit” Poincaré Lemma for star-shaped regions. The classical Poincaré Lemma
asserts that, for all n and all k > 0, every closed k-form on Rn is exact.

Recall that a set U in a vector space is star-shaped if there exists p ∈ U such that
for all q ∈ U , the line segment from p to q lies entirely in U . Given such p, we may
say that U is “star-shaped with respect to p”.2 In particular, Rn is star-shaped. In
this problem we establish that if U is an open star-shaped subset of Rn, then every
closed k-form on U (k > 0) is exact. (Thus the Poincaré Lemma follows as a special
case.) There are many ways of showing this; the point of this problem is to give an
explicit formula that produces, for each closed form ω ∈ Ωk(U), a form η ∈ Ωk−1(U)
such that ω = dη.

It suffices to produce such a formula under the hypothesis that U is star-shaped
with respect to the origin, which we henceforth assume; a more general formula can
be obtained from this by applying a translation. The case n = 0 is trivial, so we also
assume n > 0.

Set-up. For t ∈ [0, 1] define Ft : Rn → Rn by Ft(x) = tx. Since U is star-shaped
with respect to the origin, Ft(U) ⊂ U . Let V be the vector field

∑
i x

i ∂
∂xi

. For k > 0
and ω ∈ Ωk(U), define P (ω) ∈ Ωk−1(U) by

P (ω) =

∫ 1

0

t−1F ∗t (ιV ω) dt,

interpreted pointwise:

2The set U is convex if it is star-shaped with respect to each of its points.
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P (ω)
∣∣
x

=

∫ 1

0

t−1 (F ∗t (ιV ω))
∣∣
x
dt. (1.1)

Despite appearances, this integral is not improper: if we write ω as∑
I fI dx

I , where the sum is over increasing multi-indices of length k, then
(F ∗t (ιV ω))

∣∣
x

=
∑

I t
kfI(tx) ιVxdx

I , so the integrand in (1.1) is O(tk−1) as t → 0.
(End of set-up.)

Your job: Show that if ω is closed, then ω = d(P (ω)) (and hence that ω is exact).

Remark 1. With U = R3, we have seen that there is a dictionary translating
between “curl of a vector field” (interpreting “vector field” as in Calc 3) and “d of
a 1-form”, and “between divergence of a vector field” and “d of a 2-form”. Given a
vector field X such that ∇·X = 0, the map P above (with k = 2) provides one way
to construct a vector field A such that X = ∇× A.3

Remark 2. As seen in class, for any connected manifold M we have H0
DR(M) =

R. Hence the Poincaré Lemma, generalized to star-shaped regions U as above, can
be written as

Hk
DR(U) ∼=

{
R if k = 0,
0 if k > 0.

(1.2)

More generally, (1.2) holds under the much weaker assumption that U is contractible
(see problem 9), but it is harder to write down an explicit formula analogous to
“P (ω)” in that generality.

The remaining two problems, also about de Rham cohomology, are inspired by
the presentation in Bott and Tu, Differential Forms in Algebraic Topology.

8. This problem gives a proof that, for any manifold M and any k ≥ 0,
Hk

DR(M ×R) ∼= Hk
DR(M). This fact, plus induction, plus the trivial fact that (1.2)

holds for U = R0, yield another proof of the Poincaré Lemma.
Below, we simply write “Hk” for “Hk

DR”.

Set-up. Fix a manifold M . For all (p, t) ∈M ×R, recall that we can canonically
identify T(p,t)(M × R) as TpM ⊕ TtR. There is a similar canonical identification of
cotangent spaces. Hence, letting t denote the standard coordinate on R, there is a
well-defined vector field on M ×R whose value at (p, t0) is (0TpM ,

∂
∂t

∣∣
t0

), which (with

a slight abuse of notation) we will denote ∂
∂t

. Similarly, we have a well-defined 1-form
dt on M ×R.

For k ≥ 1, ω ∈ Ωk(M), and (p, t) ∈M ×R, the value of ω at (p, t) can be written
uniquely as ω′(p, t) + dt∧ω′′(p, t), where ω′(p, t) ∈

∧kT ∗pM and ω′′(p, t) ∈
∧k−1T ∗pM .

3In case you know the relevant physics: this construction of a vector potential is not terribly
useful for E&M, since the regions in which we want to find vector potentials for the magnetic field,
e.g. R3 with a curve removed (for a wire carrying current) are never star-shaped.
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(This decomposition may also be characterized by:

ω′(p, t) = s∗t
(
ι∂/∂t(dt ∧ ω(p, t))

)
, ω′′(p, t) = s∗t

(
ι∂/∂t ω(p, t))

)
, (1.3)

where st : M → M × R is the map p 7→ (p, t). You may wish to convince yourself
of this by introducing local coordinates {xi} on M . We can then write ω(p, t) as∑
|I|=k aI dx

I +
∑
|J |=k−1 bJ dt∧ dxJ , where the sums are over increasing multi-indices

of the indicated lengths, and where if k = 1, we interpret the sum over J just as
b dt for some real number b. Then ω′(p, t) =

∑
|I|=k aI dx

I and ω′′ =
∑
|J |=k−1 bJ dx

J ,

which can be recovered from the coordinate-independent characterization (1.3).)
For each p, the map t 7→ ω′′(p, t) is a continuous (in fact smooth) function R →∧k−1T ∗pM . Hence we can define a linear map S : Ωk(M ×R)→ Ωk−1(M ×R) by

S(ω)
∣∣
(p,t)

=

∫ t

0

ω′′(p, s) ds;

for each p the right-hand side is an ordinary Riemann integral of a continuous vector-
valued function. For k = 0, we simply define S(ω) = 0. (End of set-up.)

(a) Make sense out of the following formula and show that it is true:

dω = dMω
′ + dt ∧

(
∂ω′

∂t
− dMω′′

)
.

(b) Show that for all ω ∈ Ωk(M),

d(S(ω)) + S(dω) = ω − π∗s∗0 ω, (1.4)

where π : M ×R → M is projection onto the first factor, and s0 : M → M ×R is
the map p 7→ (p, 0). Consequently, if ω is closed, then ω − π∗s∗0 ω is exact.4

(c) Recall that if F : N1 → N2 is a map of manifolds, we have F ∗(dµ) = d(F ∗µ)
for all differential forms µ on N2. This implies that, for all k ≥ 0, the linear map
F ∗ : Ωk(N1)→ Ωk(N1) carries closed forms to closed forms, and exact forms to exact
forms, and therefore induces a linear map Hk(N2)→ Hk(N1). It is common to denote
this map also as F ∗, but for clarity in this problem we will denote it as F ].

Show that the “chain rule for pullbacks”, (F ◦ G)∗ = G∗ ◦ F ∗, implies that for
maps F,G that are composable as indicated, we have (F ◦G)] = G] ◦ F ]. Show also
that if F : N → N is the identity map, then F ] : Hk(N)→ Hk(N) is also the identity
(for all k).

(d) Letting I denote the identity map Hk(M ×R)→ Hk(M × R), use parts (b)
and (c) to show that the map I − π] ◦ s]0 = 0 (the zero linear map), and hence that
π] ◦ s]0 = I.

4Students who’ve taken algebraic topology will recognize (1.4) as saying that S is a cochain
homotopy, between the identity map and the map π∗s∗0, on the cochain complex Ω∗(M ×R).
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(e) Observing that π ◦ s0 is the identity map of M , show that s]0 ◦ π] is the
identity map Hk(M)→ Hk(M). Combining this with part (d), deduce that the maps
π] : Hk(M) → Hk(M ×R) and s]0 : Hk(M ×R) → Hk(M) are isomorphisms, and
are inverse to each other.

(f) Show that H0(M ×R) ∼= H0(M). Combining this with part (e), we therefore
have

Hk(M ×R) ∼= Hk(M). (1.5)

9. Let M,N be manifolds, and for t ∈ R define st : M → M ×R by st(p) = (p, t).
Again let π : M ×R → M be projection onto the first factor. From problem 8, for
each k ≥ 0 the maps s]0 : Hk(M × R) → Hk(M) and π] : Hk(M) → Hk(M × R)
are isomorphisms and are inverse to each other. Similarly, for any t ∈ R the map
s]t : Hk(M ×R)→ Hk(M) is an isomorphism that inverts π].

Suppose that F0, F1 : M → N are smoothly homotopic maps, i.e. that there
exists a smooth map F : M × [0, 1] → N such that F0 = F ◦ s0 and F1 = F ◦ s1.
(M × [0, 1] is a manifold-with-boundary; we define “smooth map” from a manifold-
with-boundary to a manifold just as we did for maps from a manifold to a manifold.)
Let h : R → [0, 1] be a smooth, monotone function such that h(t) = 0 for t ≤ 0
and h(t) = 1 for t ≥ 1; we saw in the “Bump Function” notes that such functions
exist. Define F̃ : M × R → N by F̃ (p, t) = F (p, h(t)). Then F̃ is smooth, and its
restriction to M×[0, 1] is simply a reparametrization of the homotopy F . The purpose
of introducing F̃ is just to put us in the realm where problem 8 applies directly.

(a) Show that for each k ≥ 0 we have F ]
0 = F ]

1 as maps Hk(N)→ Hk(M).

(b) Let G : M → N be a constant map (G(M) = {point}). Show that for k > 0,
G] : Hk(N)→ Hk(M) is the zero map, and that for k = 0 the map G] is injective.

(c) M is smoothly contractible if the identity map M →M is smoothly homotopic
to a constant map. Show that if M is smoothly contractible, then

Hk
DR(M) ∼=

{
R if k = 0,
0 if k > 0.

(1.6)

(This yields yet another proof of the Poincaré Lemma. The map Rn × [0, 1] →
Rn, (x, t) 7→ tx, is a homotopy between a constant map and the identity, so Rn is
smoothly contractible.)

Remark: A true fact beyond the scope of this course (because of subject matter,
not difficulty) is that if two smooth maps are homotopic, then they are smoothly
homotopic. With this fact established, the word “smoothly” can be removed from
“smoothly homotopic” and “smoothly contractible” in the above problem.
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