
Differential Geometry—MTG 6257—Spring 2018
Problem Set 2

Due-date: Friday, 3/2/18

Required problems (to be handed in): 2bce, 3a, 4, 8a, 8b(i).
In doing any of these problems, you may assume the results of all earlier problems

(optional or required).

Optional problems: All the ones that are not required.

Required reading: All of the optional problems.

1. Let X be a vector field on a manifold M , with flow Φ, and let ω be a differential
form on M or arbitrary degree. Just as we defined the Lie derivative (by X) of vector
fields, 0-forms, and 1-forms, we define the Lie derivative of ω by X by

LXω =
d

dt
(Φ∗tω)

∣∣
t=0
, (1.1)

where (1.1) is interpreted pointwise: for each p ∈M ,

(LXω)|p =
d

dt

(
(Φ∗tω)|p

)∣∣∣∣
t=0

.

Show that LX is Leibnizian with respect to wedge product:

LX(ω ∧ η) = (LXω) ∧ η + ω ∧ LXη
for all differential forms ω, η on M . (Note that, in contrast to the formula for d(ω∧η),
there is no “(−1)deg(ω)” in front of the second term this formula.)

Remark. Clearly ω 7→ LXω is also linear. As mentioned last semester, a Leib-
nizian linear function on an algebra is also called a derivation. Thus LX is a derivation
on the exterior algebra Ω?(M) = ⊕k≥0 Ωk(M).

2. Let M be a manifold. Below, “vector field” and “differential form” mean “vector
field on M ” and “differential form on M”, respectivly.

(a) Let X and Y be vector fields and let ω be a differential form of degree at least
two. Find a simple relation between ιX(ιY ω) and ιY (ιXω).1

(b) Let X be a vector field and let ω, η be differential forms.

ιX(ω ∧ η) = (ιXω) ∧ η + (−1)deg(ω)ω ∧ ιXη.
1If we set Ωk(M) = {0} for k < 0, the same relation holds without any restriction on the degree

of ω.
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Thus, like exterior derivative, ιX is a signed derivation (also called graded derivation
and antiderivation [not to be confused with “antiderivative”, which is an entirely
unrelated notion]) of the Z-graded algebra Ω∗(M). However, d increases degree by 1,
while ιX decreases degree by 1.

(c) Show that for k ≥ 1, all k-forms ω, and all vector fields X, Y1, . . . , Yk,

X (ω(Y1, Y2, . . . Yk)) = (LXω)(Y1, ..., Yk) + ω(LXY1, Y2, . . . , Yk)
+ω(Y1,LXY2, . . . , Yk) + · · ·+ ω(Y1, Y2, . . . ,LXYk).

(1.2)

(d) Use the result of part (c) to show that Lie derivative by a vector field X is
“Leibnizian with respect to contraction”: for k ≥ 0, all k-forms ω, and all vector
fields X, Y ,

LX(ιY ω) = ιLXY
ω + ιYLXω.

(e) Show that for any vector field X and any differential form ω,

ιXdω + d(ιXω) = LXω. (1.3)

Note that this implies that if ω is closed, then LXω is exact.2 If ω is an n-form, where
n = dim(M), then then trivially dω = 0, and (1.3) shows that the n-form d(ιXω)
that arose in our discussion of the Divergence Theorem is exactly LXω.

(f) Show that d commutes with Lie derivative by any vector field: for all vector
fields X and differential forms ω,

d(LXω) = LXdω.

(There are at least two ways to do this: using part (e), or working directly from the
definition (1.1).)

3. Let X, Y, Z be vector fields on a manifold M . Without introducing local coordi-
nates, show that (1.2) and (1.3) imply the following.3

2Students who’ve taken algebraic topology have seen this argument before. Equation (1.3) implies
that the map LX : Ω∗(M) → Ω∗(M) is (co-)chain homotopic to the zero map, and hence induces
the zero map on de Rham cohomology—which is exactly the same as saying that LX maps closed
forms to exact forms.

3It’s okay if you used local coordinates to establish formula (1.3). Just don’t make any explicit
use of local coordinates in problem 3.
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(a) For ω ∈ Ω1(M).

dω(X, Y ) = X(〈ω, Y 〉)− Y (〈ω,X〉)− 〈ω, [X, Y ]〉.

(b) For ω ∈ Ω2(M),

dω(X, Y, Z) = X (ω(Y, Z))− Y (ω(X,Z)) + Z (ω(X, Y ))

−ω([X, Y ], Z) + ω([X,Z], Y )− ω([Y, Z], X).

Hint: for any k-form ω and vector fields X, Y1, . . . , Yk, we have dω(X, Y1, . . . , Yk) =
(ιXdω)(Y1, . . . , Yk).

4. Let M be a manifold and Z ⊂M a submanifold. Let X and Y be vector fields on
Z, and assume that U ⊂M is an open set such that X|U and Y |U extend to (smooth)
vector fields X̃, Ỹ on U . Show that for each p ∈ Z

⋂
U ,

[X, Y ]p = [X̃, Ỹ ]p.

(Here, as often before, we have identified TpZ with j∗p(TpZ) ⊂ TpM , where j : Z →M
is the inclusion map.) In particular, [X̃, Ỹ ]p is tangent to Z and is independent of
the choices of extensions X̃, Ỹ .

This can be done in one or two sentences, and without any use of local coordinates,
using a homework problem from last semester.

5. Let E be a vector bundle over a manifold M . We define germs of sections of E
just as we defined germs of real-valued functions:

1. For each p ∈M , let G̃p(E) = {(U, s) | U is an open neighborhood of p, and s ∈ Γ(E|U)}.

2. Define an equivalence relation ∼ on G̃p(E) by declaring (U, s) ∼ (U ′, s′) if there
exists some open set V ⊂ U ∩ U ′ containing p such that s|V = s′|V .

3. As a set, define Gp(E) = G̃p(E)/ ∼.

We then show, by the same argument as for real-valued germs, that the set Gp(E)
inherits a natural vector-space structure from this construction. (You are not being
asked to show this.)

Let p ∈ M . Show that every germ [(U, s)] has a representative defined on all of
M (i.e. is the germ, at p, of a (global) section of E).

6. Let M be a manifold, Z ⊂M a submanifold, and E a vector bundle over M . It is
easily seen that E|Z is a vector bundle over Z. Show that if Z is closed in M , then
every section of E|Z extends to a section of E.

Problems 3abc of Problem Set 1 can all be viewed as special cases of this problem
(although we have not yet shown that

∧kT ∗M is a vector bundle over M). That is
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why the arguments for all three parts of that previous problem, as well as for the
problem above, are essentially identical.

7. Let M be a manifold. For k ≥ 1, let Mk(R) denote the space of k × k matrices
with real entries.

(a) Let U ⊂M be open, let k ≥ 1, and let A : U →Mk(R) be a function. Define
F : U ×Rk → U ×Rk by F (p, v) = (p, A(p)v). Show that F is smooth if and only if
the map A is smooth.

(b) Let E,E ′ be vector bundles over M and let F : E → E ′ be a bundle isomor-
phism (a smooth map that, for each p ∈ M , restricts to an isomorphism Ep → E ′p).
Prove that F is a diffeomorphism.

In particular, the total spaces E,E ′ of isomorphic vector bundles over M are
diffeomorphic manifolds. This is purely of global interest and importance, since for
any two rank-k vector bundles E,E ′ over M , every p ∈M has an open neighborhood
U such that π−1(U) and (π′)−1(U) are diffeomorphic to U ×Rk and are isomorphic
as vector bundles over U . (Here π, π′ are the projection maps of E,E ′.)

Remarks. (1) A simplified version of the argument for part (b) shows that if F
is merely a continuous map F : E → E ′ that restricts to an isomorphism Ep → E ′p
for each p ∈ M , then F is a homeomorphism. (2) It can be shown that if E,E ′ are
(smooth) vector bundles over M and and there is a continuous map F : E → E ′ that
restricts to an isomorphism Ep → E ′p for each p ∈M (hence is a homeomorphism, by
the first remark), then there is also a smooth such map (hence a diffeomorphism, by
part (b) of the problem). This is markedly different from the analogous statement for
manifolds. There are smooth manifolds that are homeomorphic but not diffeomorphic.

8. Sub-bundles and quotient bundles. Let E be a rank-k vector bundle over
a manifold M . A (vector) sub-bundle of E is a subset of E that inherits from E
the structure of a vector bundle over M . More precisely, given a subset E ′ ⊂ E,
for each p ∈ M define E ′p = E ′ ∩ Ep, and call a vector-bundle chart (V, ψ) of E
adapted to E ′ if for all p ∈ V and some r ∈ {0, . . . , k} the map ψp|E′

p
carries E ′p

bijectively to Rr × {0 ∈ Rk−r}. (If r = 0, omit the first factor in this Cartesian
product; if r = k omit the second factor. The cases r = 0 and r = k are not very
interesting, of course.) Note that such a chart can exist only if (for all p ∈ V ) Fp is
a r-dimensional vector subspace of Ep, in which ψp|E′

p
carries E ′p isomorphically to

Rr × {0 ∈ Rk−r}. Call a vector-bundle atlas of E adapted to E ′ if every chart is
adapted to E ′. A sub-bundle of E is a subset E ′ for which E has an adapted vector-
bundle atlas. Note that the integer r above is automatically constant on connected
components of M . If it is constant throughout M (in case M is not connected),
which is the only case we will consider, then by post-composing the maps ψ above
with id. × {natural projection Rk → Rr × {0}, we obtain a vector-bundle atlas of
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rank r for E ′.

(a) Let E ′ be a rank-r subbundle of E, and let (Vα, ψα), (Vβ, ψβ) be adapted vector-
bundle charts with Vα

⋂
Vβ 6= ∅. Assume that 0 < r < k. The transition function

hαβ for E can be written in block form as(
A B
C D

)
where A is an r×r matrix, B is r× (k−r), C is (k−r)×r, and D is (k−r)× (k−r).
What are the most general things you can say about the matrices A,B,C, and D?

(b) Let E ′ be a rank-r sub-bundle of E. For each p ∈ M , the quotient space
Ep/E

′
p is a vector space of dimension r. (i) Show that the set

∐
p∈M(Ep/E

′
p) carries

a natural vector-bundle structure of rank k − r. (One way to do this is to construct
a vector-bundle atlas of rank k − r out of an adapted atlas for the sub-bundle E ′.
For this, you should find part (a) helpful.) This bundle, denoted E/E ′, is called
the quotient bundle for the given bundle E and sub-bundle E ′. (ii) Show that there
is a bundle homomorphism E → E/E ′ that restricts to the natural quotient map
Ep → Ep/E

′
p for each p ∈M .

(c) Let Z ⊂ M be a submanifold. Then TM |Z is a vector bundle over Z. (i)
Show that TZ is a sub-bundle of TM |Z . (ii) If M is equipped with a Riemannian
metric g, then, as a point-set, the geometric normal bundle of Z is defined as in
class. Let us now denote this as νgeom(Z). Show that νgeom(Z) is a sub-bundle of
TM |Z . Note that if we change the Riemannian metric, the underlying set νgeom(Z) ⊂
TM |Z can change. (iii) The algebraic normal bundle of Z is the quotient bundle
νalg(Z) = (TM |Z)/TZ. This is more canonical than the geometric normal bundle, in
the sense that no Riemannian metric is needed to define it. But show that for every
Riemannian metric, the geometric normal bundle of Z is isomorphic to the algebraic
normal bundle of Z.
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